早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠C=90°,AC=BC,点D在BC边上,连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE,作DF⊥BC交AB于点F.(1)求证:AB⊥BE;(2)若AC=8,DF=3,求BE的长.
题目详情
如图,在△ABC中,∠C=90°,AC=BC,点D在BC边上,连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE,作DF⊥BC交AB于点F.

(1)求证:AB⊥BE;
(2)若AC=8,DF=3,求BE的长.

(1)求证:AB⊥BE;
(2)若AC=8,DF=3,求BE的长.
▼优质解答
答案和解析
(1)证明:作EH⊥BC于H,如图,
∵AD绕点D顺时针旋转90°得到DE,
∴∠ADE=90°,DA=DE,
∴∠ADC+∠EDH=90°,
而∠ADC+∠DAC=90°,
∴∠EDH=∠DAC,
在△ACD和△DHE中
,
∴△ACD≌△DHE,
∴AC=DH,CD=EH,
∵∠C=90°,AC=BC,
∴∠ABC=45°,
∵AC=BC=DH,
∴CD=BH,
∴BH=EH,
∴△BEH为等腰直角三角形,
∴∠EBH=45°,
∴∠ABE=90°,
∴AB⊥BE;
(2) ∵DF⊥BC,∠FBD=45°,
∴△DBF为等腰直角三角形,
∴BD=DF=3,
∵BC=AC=8,
∴CD=5,
由(1)得EH=CD=5,△BEH为等腰直角三角形,
∴BE=
EH=5
.
∵AD绕点D顺时针旋转90°得到DE,

∴∠ADE=90°,DA=DE,
∴∠ADC+∠EDH=90°,
而∠ADC+∠DAC=90°,
∴∠EDH=∠DAC,
在△ACD和△DHE中
|
∴△ACD≌△DHE,
∴AC=DH,CD=EH,
∵∠C=90°,AC=BC,
∴∠ABC=45°,
∵AC=BC=DH,
∴CD=BH,
∴BH=EH,
∴△BEH为等腰直角三角形,
∴∠EBH=45°,
∴∠ABE=90°,
∴AB⊥BE;
(2) ∵DF⊥BC,∠FBD=45°,
∴△DBF为等腰直角三角形,
∴BD=DF=3,
∵BC=AC=8,
∴CD=5,
由(1)得EH=CD=5,△BEH为等腰直角三角形,
∴BE=
2 |
2 |
看了 如图,在△ABC中,∠C=9...的网友还看了以下:
A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正 2020-04-09 …
A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正 2020-04-09 …
几ˋˊ何数学题自己先把图画出来吧图:一个由点A.B.C组成的等边三角形中,点D是边AB的中点,点E 2020-05-13 …
如图,将△OAB绕点O按逆时针方面旋转至△0′A′B′,使点B恰好落在边A′B′上,则∠ABO=多 2020-05-16 …
已知三角形ABC的三条边分别为a,b,c,I为内心,且I在边a,b,c上的射影分别为D,E,F,则 2020-06-05 …
把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD 2020-06-25 …
如图,将△OAB绕点0按逆时针方面旋转至△0′A′B′,使点B恰好落在边A′B′上.已知AB=4c 2020-07-12 …
在矩形ABCD中,边长AB=3,AD=4,两动点E,F分别从顶点B,C同时开始以相同速度在边BC, 2020-08-02 …
y+c=x+bc,b都是常数他们都不等于0.现在问2个基础的问题,假如他们2边用1除,是变成1/(y 2020-11-20 …
我国是一个多民族的国家。在长期的历史发展过科中,我国的名族融合不断增强。下列关于我国各民族发展的叙述 2020-12-06 …