早教吧作业答案频道 -->其他-->
(2013•上海模拟)如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于点M,作MN⊥AB,垂足为N,MN交BD于点P.设正方形ABCD的边长为1.(1)证明:△CMG≌△NBP;(2)
题目详情
(2013•上海模拟)如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于点
M,作MN⊥AB,垂足为N,MN交BD于点P.设正方形ABCD的边长为1.
(1)证明:△CMG≌△NBP;
(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域;
(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.
M,作MN⊥AB,垂足为N,MN交BD于点P.设正方形ABCD的边长为1.(1)证明:△CMG≌△NBP;
(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域;
(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.
▼优质解答
答案和解析
证明:(1)∵正方形ABCD,
∴∠C=∠CBA=90°,∠ABD=45°,
同理∠BEG=45°,
∵CD∥BE,
∴∠CMG=∠BEG=45°,
∵MN⊥AB,垂足为N,
∴∠MNB=90°,
∴四边形BCMN是矩形,
∴CM=NB,
又∵∠C=∠PNB=90°,∠CMG=∠NBP=45°,
∴△CMG≌△NBP;
(2)∵正方形BEFG,
∴BG=BE=x,
∴CG=1-x,
从而CM=1-x,
∴y=
(BG+MN)•BN=
(1+x)(1−x)=
−
x2(0<x<1);
(3)由已知易得MN∥BC,MG∥BP,
∴四边形BGMP是平行四边形,
要使四边形BGMP是菱形,则BG=MG,
∴x=
(1−x),
解得x=2−
,
∴BE=2−
时四边形BGMP是菱形.
证明:(1)∵正方形ABCD,∴∠C=∠CBA=90°,∠ABD=45°,
同理∠BEG=45°,
∵CD∥BE,
∴∠CMG=∠BEG=45°,
∵MN⊥AB,垂足为N,
∴∠MNB=90°,
∴四边形BCMN是矩形,
∴CM=NB,
又∵∠C=∠PNB=90°,∠CMG=∠NBP=45°,
∴△CMG≌△NBP;
(2)∵正方形BEFG,
∴BG=BE=x,
∴CG=1-x,
从而CM=1-x,
∴y=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)由已知易得MN∥BC,MG∥BP,
∴四边形BGMP是平行四边形,
要使四边形BGMP是菱形,则BG=MG,
∴x=
| 2 |
解得x=2−
| 2 |
∴BE=2−
| 2 |
看了 (2013•上海模拟)如图,...的网友还看了以下:
在矩形ABCD中,AB=5cm,BC=13cm,在DC边上一点E沿着AE把△AED折叠,使点D正好 2020-05-15 …
在三角形ABC中,点D、E、F分别在AC,AB,BC边上且四边形CDEF是正方形,AC=3,BC= 2020-05-20 …
抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴 2020-06-11 …
如图,抛物线y=12x2-x-32与x轴交于A、B两点,D为y轴上一点,E为抛物线上一点,是否存在 2020-06-14 …
如图,抛物线y=12x2-x-32与x轴交于A、B两点,D为y轴上一点,E为抛物线上一点,是否存在 2020-06-14 …
(2014•泰州)如图,平面直角坐标系xOy中,一次函数y=-34x+b(b为常数,b>0)的图象 2020-07-21 …
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边 2020-08-01 …
如图,在直角坐标系xOy中,一次函数y=-x+b(b为常数)的图象与x轴、y轴分别相交于点A、B; 2020-08-03 …
如图,在正△ABC中,点D,E分别在边AC,AB上,且AD=13AC,AE=23AB,BD,CE相交 2020-11-03 …
如图所示为一列向左传播的横波某时刻的图象,下列说法不正确的是()A.质点c、e的运动方向始终相反B. 2020-12-15 …