早教吧作业答案频道 -->数学-->
求1/(x^3+x^2+x+1)的不定积分
题目详情
求1/(x^3+x^2+x+1)的不定积分
▼优质解答
答案和解析
∫1/(x^3+x^2+x+1)dx
=∫1/(x^2(x+1)+(x+1))dx
=∫1/((x+1)(x^2+1))dx
=∫A/(x+1)+(Bx+C)/(x^2+1)dx
Ax^2+A+Bx^2+Cx+Bx+C=1
A+B=0 C+B=0 A+C=1
A=1/2 B=-1/2 C=1/2
=1/2∫1/(x+1)+(-x+1)/(x^2+1)dx
=1/2∫1/(x+1)dx-1/2∫x/(x^2+1)dx+1/2∫1/(x^2+1)dx
=1/2(ln(x+1)-1/2ln(x^2+1)+arctg(x))+C
=∫1/(x^2(x+1)+(x+1))dx
=∫1/((x+1)(x^2+1))dx
=∫A/(x+1)+(Bx+C)/(x^2+1)dx
Ax^2+A+Bx^2+Cx+Bx+C=1
A+B=0 C+B=0 A+C=1
A=1/2 B=-1/2 C=1/2
=1/2∫1/(x+1)+(-x+1)/(x^2+1)dx
=1/2∫1/(x+1)dx-1/2∫x/(x^2+1)dx+1/2∫1/(x^2+1)dx
=1/2(ln(x+1)-1/2ln(x^2+1)+arctg(x))+C
看了 求1/(x^3+x^2+x+...的网友还看了以下: