早教吧作业答案频道 -->数学-->
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.[感知]如图①,当点H与点C重合时,可得FG=FD.[探究]如
题目详情
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
[感知]如图①,当点H与点C重合时,可得FG=FD.
[探究]如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.
[应用]在图②中,当AB=5,BE=3时,利用探究的结论,求FG的长.

[感知]如图①,当点H与点C重合时,可得FG=FD.
[探究]如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.
[应用]在图②中,当AB=5,BE=3时,利用探究的结论,求FG的长.

▼优质解答
答案和解析
猜想FD=FG.
证明:连接AF,
由折叠的性质可得AB=AG=AD,
在Rt△AGF和Rt△ADF中,
,
∴△AGF≌△ADF.
故可得FG=FD.
[应用]设FG=x,则FC=5-x,FE=3+x,
在Rt△ECF中,EF2=FC2+EC2,即(3+x)2=(5-x)2+22,
解得x=
.
即FG的长为
.
猜想FD=FG.证明:连接AF,
由折叠的性质可得AB=AG=AD,
在Rt△AGF和Rt△ADF中,
|
∴△AGF≌△ADF.
故可得FG=FD.
[应用]设FG=x,则FC=5-x,FE=3+x,
在Rt△ECF中,EF2=FC2+EC2,即(3+x)2=(5-x)2+22,
解得x=
| 5 |
| 4 |
即FG的长为
| 5 |
| 4 |
看了 在正方形ABCD中,过点A引...的网友还看了以下:
二次函数Y=X^2-(M^2-4M+5/2)-2(M^2-4M+9/2)的图象与X轴的交点为A、B 2020-04-27 …
已知直线 y=-3/4x+m与x轴y轴分别交于点A和点B,点B的坐标为(0,6) (1)求的m值和 2020-05-13 …
函数y=(x-2)与x轴交于点A与y轴交于点B对称轴上是否存在一点p使P、A、O、B为顶点的四边形 2020-05-16 …
在直角坐标系中,一次函数y=x+m与反比例函数y=m/x在第一象限交与A在直角坐标系中,一次函数y 2020-05-22 …
在直角坐标系中,已知点A(-2.0),B(0,4)C(0.3).过C作直线交X轴于D.使以D.O. 2020-06-02 …
根据下列语句画出图形1.直线l与直线m相交于点A,直线m与直线n相交于点C,直线你与直线l相交于点 2020-06-12 …
在平面直角坐标系中,直线L1:y=2x+b交x轴正半轴于点A,点B(4,0)在点A的右边,现过点B 2020-06-14 …
已知二次函数y=(x+2)^2的图像与x轴交于点A,于y轴交于点B(1)在对称轴上是否存在一点P, 2020-07-21 …
已知F(x)=x(-1/2),在点(a,f)的切线方程交横纵轴的于两点,与原点围成的三角形面积S= 2020-07-30 …
过点a(3,1)的直线与x轴的夹角为135度与y轴的正半轴交与点b直线ac交y轴与点c点c在点b方 2020-08-02 …