早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-4(m≠0)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,-3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最

题目详情
在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-4(m≠0)与 x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,-3).
作业帮
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)将抛物线在B,C之间的部分记为图象G(包含B,C两点),若直线y=5x+b与图象G有公共点,请直接写出b的取值范围.
▼优质解答
答案和解析
(1)由题意可得,m-4=-3.∴m=1.
∴抛物线的解析式为:y=x2-2x-3.
(2)如图,点A关于抛物线的对称轴对称的点是B,
连接BC交对称轴于点P,
则点P就是使得PA+PC的值最小的点.
由y=x2-2x-3,得对称轴是x=1,
由B(3,0),C(0,-3),得
直线BC的解析式为y=x-3,
当x=1时,y=1-3=-2,
∴点P的坐标为(1,-2).
(3)当x=0时,直线y=5x+b≤-3,
解得b≤-3;
直线y=5x+b与抛物线相切时,得
x2-7x-(3+b)=0,
49+4(3+b)≥0,
解得b≥-
61
4

符合题意的b的取值范围是-
61
4
≤b≤-3.