早教吧作业答案频道 -->其他-->
(2008•石景山区二模)已知:如图①,△ABC为边长为2的等边三角形,D、E、F分别为AB、AC、BC中点,连接DE、DF、EF.将△BDF向右平移,使点B与点C重合;将△ADE向下平移,使点A与点C重合,如
题目详情
(2008•石景山区二模)已知:如图①,△ABC为边长为2的等边三角形,D、E、F分别为AB、AC、BC中点,连接DE、DF、EF.将△BDF向右平移,使点B与点C重合;将△ADE向下平移,使点A与点C重合,如图②.
(1)设△ADE、△BDF、△EFC的面积分别为 S1、S2、S3,则S1+S2+S3______
(用“<、=、>”填空)

(2)已知:如图③,∠AOB=∠COD=∠EOF=60°,AD=CF=BE=2,设△ABO、△FEO、△CDO的面积分别为S1、S2、S3;问:上述结论是否成立?若成立,请给出证明;若不成立,请说明理由.(可利用图④进行探究)
(1)设△ADE、△BDF、△EFC的面积分别为 S1、S2、S3,则S1+S2+S3______
3 |


(2)已知:如图③,∠AOB=∠COD=∠EOF=60°,AD=CF=BE=2,设△ABO、△FEO、△CDO的面积分别为S1、S2、S3;问:上述结论是否成立?若成立,请给出证明;若不成立,请说明理由.(可利用图④进行探究)
▼优质解答
答案和解析
(1)S1+S2+S3<
(2分)
(2)结论成立(3分)
证明一:延长OB到H使BH=OE
延长OA到G使AG=OD
连接HG(4分)
∵OA+AG=OA+DO=AD=2
OB+BH=OB+OE=BE=2
∠AOB=60°
∴△GHO是等边三角形
∵OG=OH=HG=2
∴S△GHO=
(5分)
在HG上取点M,使MG=OC
∵HM+MG=HG=2
OC+OF=CF=2
∴HM=OF
在△MGA和△COD中,
∴△MGA≌△COD
同理可证:△MHB≌△FOE(6分)
∴S2=S△MHB,S3=S△MGA
由图形可知:S△ABO+S△MHB+S△MGA<S△GHO,
∴S1+S2+S3<S△GHO=
即S1+S2+S3<
.

3 |
(2)结论成立(3分)
证明一:延长OB到H使BH=OE
延长OA到G使AG=OD
连接HG(4分)
∵OA+AG=OA+DO=AD=2
OB+BH=OB+OE=BE=2
∠AOB=60°
∴△GHO是等边三角形
∵OG=OH=HG=2
∴S△GHO=
3 |
在HG上取点M,使MG=OC
∵HM+MG=HG=2
OC+OF=CF=2
∴HM=OF
在△MGA和△COD中,
|
∴△MGA≌△COD
同理可证:△MHB≌△FOE(6分)
∴S2=S△MHB,S3=S△MGA
由图形可知:S△ABO+S△MHB+S△MGA<S△GHO,
∴S1+S2+S3<S△GHO=
3 |
即S1+S2+S3<
3 |
看了 (2008•石景山区二模)已...的网友还看了以下:
提先谢谢了,越快越好1.求下列函数的值:(1)已知f(x)=|x-2|分之x+1,求f(0),f( 2020-04-27 …
函数y=sin2x的图像F,平移向量(-1,1)后,得到图像F′,那么图像F′的函数解析式是 2020-05-16 …
如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固 2020-05-17 …
有关功计算公式推导的问题。功计算公式推导的一个方法是将位移分解成平行于和垂直于力F分位移Fcosa 2020-05-17 …
如图,边长为6cm的正方形ABCD中,点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时 2020-06-21 …
如图,在长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=DC=12cm,BC=AD=8cm 2020-07-10 …
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°,点E、F同 2020-07-21 …
若偶函数f(x)在(-无穷大,-1)上是增函数,则下列关系式中成立的是()A.f(-2分之3)<f 2020-08-01 …
若函数f(x)=x-x分之,则对任意不为0的实数x恒成立的是a.f(x)=f(-x)b.f(x)=f 2020-12-17 …
1、设函数f(x)=x分之m+m(x≠0)且f(1)=2,则f(2)=2、下列函数中,满足关系f(x 2020-12-17 …