早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)

题目详情
(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?
▼优质解答
答案和解析
(1)由题意得:
M(12,0),P(6,6);

(2)由顶点P(6,6)设此函数解析式为:y=a(x-6)2+6,
将点(0,3)代入得a=−
1
12

∴y=−
1
12
(x-6)2+6
=−
1
12
x2+x+3;

(3)设A(m,0),则
B(12-m,0),C(12-m,−
1
12
m2+m+3),D(m,−
1
12
m2+m+3)
∴“支撑架”总长AD+DC+CB=(−
1
12
m2+m+3)+(12-2m)+(−
1
12
m2+m+3)=−
1
6
m2+18
∵此二次函数的图象开口向下.
∴当m=0时,AD+DC+CB有最大值为18.
看了 (2008•佛山)如图,某隧...的网友还看了以下: