早教吧作业答案频道 -->其他-->
一道高等数学题设f(x)在[a,b]上具有二阶导数,且f'(a)=f'(b)=0.试证在(a,b)内至少有一点c,使|f"(c)|大于等于4|[f(b)-f(a)]/(b-a)^2|成立.
题目详情
一道高等数学题
设f(x)在[a,b]上具有二阶导数,且f'(a)=f'(b)=0.试证在(a,b)内至少有一点c,使|f"(c)|大于等于4|[f(b)-f(a)]/(b-a)^2|成立.
设f(x)在[a,b]上具有二阶导数,且f'(a)=f'(b)=0.试证在(a,b)内至少有一点c,使|f"(c)|大于等于4|[f(b)-f(a)]/(b-a)^2|成立.
▼优质解答
答案和解析
f(x)有泰勒展开式:
f(x)=f(a)+f''(ξ1)(x-a)²/2,
f(x)=f(b)+f''(ξ2)(x-b)²/2,ξ1,ξ2均在(a,b)内.
所以
f[(a+b)/2]-f(a)=f''(ξ1)(b-a)²/8
f[(a+b)/2]-f(b)=f''(ξ2)(b-a)²/8,两式相减取绝对值得
|f(b)-f(a)|=|f''(ξ1)-f''(ξ2)|(b-a)²/8
|f''(ξ1)-f''(ξ2)|=8|f(b)-f(a)|/(b-a)²
若记|f''(ξ1)|,|f''(ξ2)|中较大者为|f''(c)|,
则|f''(ξ1)-f''(ξ2)|≤|f''(ξ1)|+|f''(ξ2)|≤2|f''(c)|
从而|f''(c)|≥4|f(b)-f(a)|/(b-a)².
f(x)=f(a)+f''(ξ1)(x-a)²/2,
f(x)=f(b)+f''(ξ2)(x-b)²/2,ξ1,ξ2均在(a,b)内.
所以
f[(a+b)/2]-f(a)=f''(ξ1)(b-a)²/8
f[(a+b)/2]-f(b)=f''(ξ2)(b-a)²/8,两式相减取绝对值得
|f(b)-f(a)|=|f''(ξ1)-f''(ξ2)|(b-a)²/8
|f''(ξ1)-f''(ξ2)|=8|f(b)-f(a)|/(b-a)²
若记|f''(ξ1)|,|f''(ξ2)|中较大者为|f''(c)|,
则|f''(ξ1)-f''(ξ2)|≤|f''(ξ1)|+|f''(ξ2)|≤2|f''(c)|
从而|f''(c)|≥4|f(b)-f(a)|/(b-a)².
看了 一道高等数学题设f(x)在[...的网友还看了以下:
已知f(x)=x+13x-1.(1)求f(f(x));(2)对参数a的哪些值,方程|x|+|x+1 2020-05-17 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
下列命题正确的是()A.若函数f(x)在x=a处连续,则函数f(x)在x=a的邻域内连续B.若函数 2020-06-12 …
对函数f(x),若f(x)=x,称x为f(x)不动点;若f(f(x))=x,称为的稳定点.A={x 2020-08-01 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
已知函数f(x)是奇函数:当x>0时,f(x)=x(1-x);则当x<0时,f(x)=()A.f(x 2020-11-01 …
高三学渣悔改求学.设f(x)的定义域为D,若f(x)满足条件:存在[a,b]属于D使为什么在x=a时 2020-11-04 …
一道高二文科函数题~f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x定义域为R,已知f( 2020-11-21 …
高一集合对于函数F(X)=X,则称为X为F(X)的不动点,若F(F(X))=X,则称X为F(X)的稳 2020-12-08 …
(2012•湖南模拟)函数f(x)和g(x)的定义域为[a,b],若对任意的x∈[a,b],总有|1 2021-01-07 …