早教吧作业答案频道 -->数学-->
如图1,点E是正方形ABCD的边CD上一点(不与C、D重合),连结AE,过点A作AF⊥AE,交CB的延长线于点F(1)求证:AE=AF;(2)连结EF,M为EF的中点,连结BM,求BMCE的值;(3)
题目详情
如图1,点E是正方形ABCD的边CD上一点(不与C、D重合),连结AE,过点A作AF⊥AE,交CB的延长线于点F
(1)求证:AE=AF;
(2)连结EF,M为EF的中点,连结BM,求
的值;
(3)图2中,以BF为边作正方形BFHG,AF与CG相交于P点,当点E在边CD上运动时(不与C、D重合),请直接写出∠APD=___度.

(1)求证:AE=AF;
(2)连结EF,M为EF的中点,连结BM,求
BM |
CE |
(3)图2中,以BF为边作正方形BFHG,AF与CG相交于P点,当点E在边CD上运动时(不与C、D重合),请直接写出∠APD=___度.

▼优质解答
答案和解析
(1)如图1∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠BAD=∠D=90°,
∴∠ABF=90°,
∵∠FAE=90°,∴∠FAE-∠BAE=∠BAD-∠BAE,
即;∠FAB=∠EAD,
在△ABF与△DAE中,
,
△ABF≌△DAE(ASA),
∴AF=AE;
(2)如图1取FC得中点N,连接MN,AM,
∵点M是FE的中点,
∴CE=2MN,
∵∠AKM=∠FKB,∠AMF=∠MNB=90°,
∴△AKM∽△BKF,
∴
=
,∵∠AKB∠=MKB,
∴△AFK∽△BKF,
∴∠KBM=∠AFK=45°,
∴∠MBN=45°,∴BM=
MN,
∴
=
;
(3)如图2过点D作DQ⊥PD交PC的延长线于Q,
∵四边形BFHG是正方形,
∴BG=BF,
在△ABF与△CBG中,
,
∴△ABF≌△CBG(SAS),
∴∠FAB=∠BCG,
∵∠AGP=∠CGB,
∴∠APG=∠ABC=90°,
∵∠ADC=∠PDQ=90°,
∴∠ADP=∠QDC,
∵AB∥CD,∴∠DCQ=∠AGC,∴∠PAG+∠BAD=∠PAG+∠APG,
即∠PAD=∠AGC=∠DCQ,
在△PAD与△DCQ中,
∴△PAD≌△QCD(ASA),
∴PD=DQ,
∴∠DPQ=45°,
∴∠APD=45°.
故答案:45°.

∴AB=AD,∠ABC=∠BAD=∠D=90°,
∴∠ABF=90°,
∵∠FAE=90°,∴∠FAE-∠BAE=∠BAD-∠BAE,
即;∠FAB=∠EAD,
在△ABF与△DAE中,
|
△ABF≌△DAE(ASA),
∴AF=AE;
(2)如图1取FC得中点N,连接MN,AM,
∵点M是FE的中点,
∴CE=2MN,
∵∠AKM=∠FKB,∠AMF=∠MNB=90°,
∴△AKM∽△BKF,
∴
AK |
FK |
KM |
BK |
∴△AFK∽△BKF,
∴∠KBM=∠AFK=45°,
∴∠MBN=45°,∴BM=
2 |

∴
BM |
CE |
| ||
2 |
(3)如图2过点D作DQ⊥PD交PC的延长线于Q,
∵四边形BFHG是正方形,
∴BG=BF,
在△ABF与△CBG中,
|
∴△ABF≌△CBG(SAS),
∴∠FAB=∠BCG,
∵∠AGP=∠CGB,
∴∠APG=∠ABC=90°,
∵∠ADC=∠PDQ=90°,
∴∠ADP=∠QDC,
∵AB∥CD,∴∠DCQ=∠AGC,∴∠PAG+∠BAD=∠PAG+∠APG,
即∠PAD=∠AGC=∠DCQ,
在△PAD与△DCQ中,
|
∴△PAD≌△QCD(ASA),
∴PD=DQ,
∴∠DPQ=45°,
∴∠APD=45°.
故答案:45°.
看了 如图1,点E是正方形ABCD...的网友还看了以下:
如图,在梯形ABCD中,AB‖DC,AC交BD于点F,延长AD,BC交于点E,且DE=2,AD=3 2020-05-16 …
如图,梯形ABCD中,AB//DC,AC交BD于点F,延长AD,BC交点E,且DE=2,AD=3求 2020-05-16 …
求一题数学题 题见补充如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形 2020-05-16 …
平行四边形ABCD中,∠BAD、∠ABC的平分线交于点F,延长BF交AD于点E(1)猜想AF与BE 2020-05-16 …
圆和直线的关系,是以BC为直径的圆O上的一点,AD垂直BC与点D,过B作圆O的切线,与CA的延长线 2020-05-20 …
在三角形BCD中BE平分∠DBC交CD于点F延长BC至GCE平分∠DCG且ECDB的延长线交于A点 2020-07-17 …
抛物线y=-(√3/3)x^2-(2√3/3)x+√3的图像与x轴交于A,B两点,与y轴交于c点, 2020-07-31 …
,0),圆M经过原点O及点A已知在平面直角坐标系中,线段OC的长是方程x^2-2根号3x+3=0的 2020-07-31 …
弦AD和CE相交于圆O内一点F,延长EC与过点A的切线相交于点B,已知AB=BF=FD,BC=1,C 2020-11-03 …
(2012•武汉元月调考)在边长为4的正方形ABCD中,以点B为圆心,BA为半径作弧AC,F为AC上 2020-12-01 …