早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一刚体以每分钟60转绕z轴做匀速转动(ω沿z轴正方向).设某时刻刚体上一点P的位置矢量为r=3i+4j+5k,其单位为“10^-2m”,若以“10^-2m·s^-1”为速度单位,则该时刻P点的速度为:(A)v=94.2i+1

题目详情
一刚体以每分钟60 转绕z 轴做匀速转动( ω 沿z 轴正方向).设某时刻刚体上
一点P 的位置矢量为r =3i+4j+5k,其单位为“10^-2 m”,若以“10^-2 m·s^-1”
为速度单位,则该时刻P 点的速度为:
(A) v = 94.2i +125.6j +157.0k
(B)v = −25.1i +18.8j
(C)v = −25.1i −18.8j
(D)v = 31k.
▼优质解答
答案和解析
B
绕z轴转就说明k不变,而且最后问的是线速度,所以答案里肯定没有k.排除A,D.然后设x=a*cosA,y=a*sinA,在P时刻x=3,y=4,带进去算a就等于(3^2+4^2)^0.5=5.所以每秒钟P点转的路程就是2*pi*r=10*pi=31.4,把这个量分解成x,y轴上后就变成了25.1和18.8.问题是这个符号是扎回事儿.虽然画图看两个轴都在正方向里,但是我们知道了x=a*cosA,y=a*sinA,这个是位置的方程,导一次就是速度,即v(x)=-asinA,v(y)=acosA,既然位置都是正的(都在第一象限),那么v(x)就肯定是负的了,然后v(y)是正的.所以选B.
看了 一刚体以每分钟60转绕z轴做...的网友还看了以下: