早教吧作业答案频道 -->数学-->
定点M(1,0)到双曲线x^2-Y^2=4上一点p的最短距离为多少答案是(3倍根号2)÷2
题目详情
定点M(1,0)到双曲线x^2-Y^2=4上一点p的最短距离为多少
答案是(3倍根号2)÷2
答案是(3倍根号2)÷2
▼优质解答
答案和解析
设 P(x,y) 是双曲线上任一点,则
|PM|^2=(x-1)^2+y^2=x^2-2x+1+(x^2-4)=2x^2-2x-3=2(x-1/2)^2-7/3 ,
由于 x^2>=4 ,所以 x=2 ,
所以,当 x=2 时,|PM|^2 有最小值 1 ,
也就是,当P(2,0)时,P 到 M 的距离最短,为 1 .
|PM|^2=(x-1)^2+y^2=x^2-2x+1+(x^2-4)=2x^2-2x-3=2(x-1/2)^2-7/3 ,
由于 x^2>=4 ,所以 x=2 ,
所以,当 x=2 时,|PM|^2 有最小值 1 ,
也就是,当P(2,0)时,P 到 M 的距离最短,为 1 .
看了 定点M(1,0)到双曲线x^...的网友还看了以下:
高中线性规划数学题2道已知点P(x,y)满足不等式组x+y≥4,x≤4,y≤3,则动点M(cosθ 2020-05-13 …
设椭圆的中心在原点,长轴在x轴上,离心率e=根号3/2.已知点P(0,3/2)到这个椭圆上的点的最 2020-05-16 …
常微分方程问题,例题不懂求(dy/dx)^3+2x*dy/dx-y=0的解解出y,并令dy/dx= 2020-06-28 …
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=根号3/2,已知点P(0,3/2)到这个椭圆上的点 2020-06-30 …
p是质数,求所有p的个数,使得满足p^4的所有正约数的和是完全平方数根据等比数列球和公式得到,(P 2020-07-30 …
椭圆的题设椭圆的中心是坐标原点,长轴在x轴上,且长轴的长度是短轴的2倍.已知点p(0,3/2)到这 2020-07-31 …
C:x^2/a^2+y^2/b^2=1的离心率为1/2,其左焦点到点p(2,1)的距离为根号10, 2020-08-01 …
P是正方形ABCD内一点,正方形边长为2,求PA十PB十PC最小值,答案根号2十根号6,在AB左侧作 2020-11-03 …
椭圆的中心是坐标原点,常州在x轴上,离心率e=½*根号3.已知P(0,3/2)到这椭圆上的最远距离是 2020-11-12 …
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=3/2,已知点P(0,3/2)到这个椭圆上的点最远距 2021-01-13 …