早教吧作业答案频道 -->数学-->
P是双曲线(焦点在x轴上的标准方程)则PF1F2内切圆心横坐标为什么?(F为焦点)急!
题目详情
P是双曲线(焦点在x轴上的标准方程)则PF1F2内切圆心横坐标为什么?(F为焦点)急!
▼优质解答
答案和解析
设:点P是双曲线左支上一点
设a为双曲线的半实轴,按双曲线的定义
|PF2|-|PF1|=2a
若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引得两条切线相等:
则有:PF2-PF1=(PC+CF2)-(PB+BF1)
=CF2-BF1=AF2-F1A
=(c-x)-[x-(-c)]
=-2x=2a
x=-a
所以内切圆的圆心横坐标为-a,也就是在双曲线左支与X轴的交点上方.
如P是右支上一点,同上解得横坐标是a
设a为双曲线的半实轴,按双曲线的定义
|PF2|-|PF1|=2a
若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引得两条切线相等:
则有:PF2-PF1=(PC+CF2)-(PB+BF1)
=CF2-BF1=AF2-F1A
=(c-x)-[x-(-c)]
=-2x=2a
x=-a
所以内切圆的圆心横坐标为-a,也就是在双曲线左支与X轴的交点上方.
如P是右支上一点,同上解得横坐标是a
看了 P是双曲线(焦点在x轴上的标...的网友还看了以下:
一轮复习二次函数题目函数F(x)=ax^2+(b+1)x+b-2(a不等于0)若存在实数P使F(P) 2020-03-30 …
已知二次函数f(x)=4x2-2p(p-2)-2p2-p+1在区间[-1,1]内至少存在一点c,使 2020-05-13 …
1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).(2)已知f 2020-05-13 …
1.y''+(y')^2+1=0求通解,我想问这个使用y''=f(x,y')型的算还是用y''=f 2020-06-25 …
条件概率问题P(E|F)=P(EF)/P(F)这个是如何从最原始的公式推导出来的?另外P(EF)我 2020-07-09 …
自考.工程经济学.(F/P,8%,5)=1.469(P/F,8%,5)=0.6806(F/A,8% 2020-07-18 …
下面从集合P到集合Q的对应f为映射的是A.P={0,3,4},Q={-2,-√3,0,√3,2}, 2020-07-30 …
在等边△ABC中,AB=2,点P为AB边上任一点,过点P作PE垂直BC于E,过E作EF垂直AC于F 2020-07-30 …
抛物线y²=2px(p>0),F为焦点,则P表示(A)F到准线距离(B)F到准线的距离为1/2(C 2020-07-31 …
已知文法G:(1)E→E+T|T(2)T→T*F|F(3)F→P↑F|P(4)P→(E)|i1.已知 2020-12-07 …