早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中有两点A(2,0)和B(0,2),a为过点A且垂直于x轴的直线,P(x,0)为x轴的负半轴上的任一点,连接BP,过P点作PC⊥PB交直线a于点C(2,y).(1)求y与x之间的函

题目详情
如图,在平面直角坐标系中有两点A(2,0)和B(0,2),a为过点A且垂直于x轴的直线,P(x,0)为x轴的负半轴上的任一点,连接BP,过P点作PC⊥PB交直线a于点C(2,y).
(1)求y与x之间的函数关系式;
(2)若将条件“P(x,0)为x轴的负半轴上的任一点”改为“P为x轴上的任一点”,试猜想:(1)中的函数关系式是否仍然成立?请在“①:0<x<2”、“②:x>2”中选择一种情形画图并计算说明;
(3)在(2)的条件下,当y=-时,试求△PBC的面积.

▼优质解答
答案和解析
(1)由同角的余角相等,可得∠PBO=∠CPA,又由∠BOP=∠PAC=90°,可得△POB∽△CAP,由相似三角形的对应边成比例,易得=,即可求得y=-x2+x;
(2)画出图形,证明方法与(1)相同,易得所得结果不变;
(3)首先代入函数解析式,即可求得x的值,然后求得两直角边的值,即可求得面积.
【解析】
(1)∵∠BOP=∠PAC=90°,
∴∠PBO+∠BPO=∠CPA+∠BPO,
∴∠PBO=∠CPA,
∴△POB∽△CAP.
=
=
即y=-x2+x.(x<0)
解法2:在Rt△PBC中运用勾股定理,也可得y=-x2+x.
(2)(1)中的函数关系式仍然成立.
①如图:∵∠BOP=∠PAC=90°,
∴∠PBO+∠BPO=∠CPA+∠BPO,
∴∠PBO=∠CPA,
∴△POB∽△CAP.
=

∴y=-x2+x.(0<x<2)
(3)当y=-时,-x2+x=-
解得x1=3,x2=-1.
∴当x=3时,PB===,PC=
∴S△PBC=PB•PC=
当x=-1时,PB=,PC=
∴S△PBC=PB•PC=
故△PBC的面积为或者