早教吧作业答案频道 -->其他-->
数学课上,张老师给出了问题:如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运
题目详情
数学课上,张老师给出了问题:
如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;
经过思考,小明展示了一种正确的解题思路:由△ABP≌△BCD,从而得出AP=BD.
在此基础上,同学们作了进一步探究:
(1)小颖提出:如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;
(2)小华提出:如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE.你认为小华的观点正确吗?如果正确,写出证明过程.

如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;
经过思考,小明展示了一种正确的解题思路:由△ABP≌△BCD,从而得出AP=BD.
在此基础上,同学们作了进一步探究:
(1)小颖提出:如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;
(2)小华提出:如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE.你认为小华的观点正确吗?如果正确,写出证明过程.

▼优质解答
答案和解析
(1)根据题意,CP=AD,
∴CP+BC=AD+AC,
即BP=CD,
在△ABP和△BCD中,
,
∴△ABP≌△BCD(SAS),
∴∠APB=∠BDC,
∵∠APB-∠PAC=∠ACB=60°,∠DAQ=∠PAC,
∴∠BDC-∠DAQ=∠BQP=60°;
(2)小华的观点正确.
过点D作DG∥AB交BC于点G,
∴∠CDG=∠C=∠CGD=60°,
∴△DCG为等边三角形,
∴DG=CD=BP,
在△DGE和△PBE中,
,
∴△DGE≌△PBE(AAS),
∴DE=EP.
∴CP+BC=AD+AC,
即BP=CD,
在△ABP和△BCD中,
|
∴△ABP≌△BCD(SAS),
∴∠APB=∠BDC,
∵∠APB-∠PAC=∠ACB=60°,∠DAQ=∠PAC,
∴∠BDC-∠DAQ=∠BQP=60°;
(2)小华的观点正确.
过点D作DG∥AB交BC于点G,∴∠CDG=∠C=∠CGD=60°,
∴△DCG为等边三角形,
∴DG=CD=BP,
在△DGE和△PBE中,
|
∴△DGE≌△PBE(AAS),
∴DE=EP.
看了 数学课上,张老师给出了问题:...的网友还看了以下:
已知正方形ABCD的边长为2,动点p从A点出发,沿正方形的边界经过点B……1.已知正方形ABCD的 2020-04-27 …
写出下列代数式表示的实际意义:(1)一个等边三角形的边长为p,一个正方形的边长为q,则3p+4q表 2020-05-13 …
已知:一个等腰直角三角形腰长为a,三边上的高之积为P,一个等边三角形边长为a,三边上的高之积为Q, 2020-05-13 …
A为p*q矩阵,B为q*p矩阵,证明det(E+AB)=det(E+BA) 2020-06-03 …
假设A为B的子集合,证明P(A)为P(B)的子集合很急的作业``谁能帮我证明一下```请详细些`谢 2020-06-14 …
为什么三角形的一个边长等于一个边乘以正弦比就知道其中2个角一个阿尔法一个贝塔和这2角的夹边a为什么 2020-07-18 …
对于一个三边长为p,q,r的三角形,其中p≤q≤r,称函数y=px2-rx+q为这个三角形的“派生 2020-07-25 …
设集合,的子集,其中,当满足时,我们称子集A为P的“好子集”,则这种“好子集”的个数为.(用数字作 2020-07-29 …
几何三角形如已知三角形的对边A为3临边B为4时怎么算出临边与斜边的夹角度数是直角三角形A边是对边为 2020-07-30 …
三角形ABC中,知道角A为60度,对应边a为2,求面积和周长最值? 2020-08-01 …