早教吧作业答案频道 -->其他-->
某厂生产两种产品,总收入R与两种产品的产量x和y的函数关系是:R(x,y)=100x+150y-x2-2xy-2y2;总成本C与产量x和y的函数关系是C(x,y)=700+20x+50y.(Ⅰ)在产量x和y不受限制的情况下,该厂
题目详情
某厂生产两种产品,总收入R与两种产品的产量x和y的函数关系是:R(x,y)=100x+150y-x2-2xy-2y2;总成本C与产量x和y的函数关系是C(x,y)=700+20x+50y.
(Ⅰ)在产量x和y不受限制的情况下,该厂应如何确定两种产品的产量,才可获得最大的利润?最大利润是多少?
(Ⅱ)若限于原料供应情况,要求两种产品的总产量固定为30不变时,又应如何安排生产,才可获得最大的利润?这时的最大利润是多少?
(Ⅰ)在产量x和y不受限制的情况下,该厂应如何确定两种产品的产量,才可获得最大的利润?最大利润是多少?
(Ⅱ)若限于原料供应情况,要求两种产品的总产量固定为30不变时,又应如何安排生产,才可获得最大的利润?这时的最大利润是多少?
▼优质解答
答案和解析
(Ⅰ)
∵由题意可知总利润函数Q(x,y)=R(x,y)-C(x,y)=80x+100y-x2-2xy-2y2-700,
∴
,
解得:
,
∴在产量x和y不受限制的情况下,该厂生产两种产品的产量分别为
才可获得最大的利润,
并且最大利润为:Q(x,y)|(30,10)=1000,
∴最大利润是1000.
(Ⅱ)
∵限于原料供应情况,要求两种产品的总产量固定为30不变,
∴x+y=30,
此时可引入拉格朗日函数F(x,y,λ)=Q(x,y)+λ(x+y-30):
从而:
,
解得:
,
∴当
时可获得最大利润,且最大利润为Qmax(x,y)=Q(20,10)=900.
(Ⅰ)
∵由题意可知总利润函数Q(x,y)=R(x,y)-C(x,y)=80x+100y-x2-2xy-2y2-700,
∴
|
解得:
|
∴在产量x和y不受限制的情况下,该厂生产两种产品的产量分别为
|
并且最大利润为:Q(x,y)|(30,10)=1000,
∴最大利润是1000.
(Ⅱ)
∵限于原料供应情况,要求两种产品的总产量固定为30不变,
∴x+y=30,
此时可引入拉格朗日函数F(x,y,λ)=Q(x,y)+λ(x+y-30):
从而:
|
解得:
|
∴当
|
看了 某厂生产两种产品,总收入R与...的网友还看了以下:
在如图所示电路中,电源电动势E=6.0V,内阻r=0.5Ω,D为直流电动机,电枢线圈电阻R=1.0 2020-05-17 …
怎么求电场的散度最终求得类似于divE=k/r^2的式子,并且k=0.意味着在r!=0时,E的散度 2020-06-02 …
高数:设向量r=(x,y,z),则在|r|≠0处有rot(grad(1/|r|))=?求过程说明, 2020-06-05 …
高数:设向量r=(x,y,z),则在|r|≠0处有rot(grad(1/|r|))=?主要求过程说 2020-06-05 …
对于集合M包含R^2,称M为开集,当且仅当任意P0属于M,存在r>0,使得{P属于R^2||PP0 2020-07-09 …
常微分方程的题:f(x,y)在R={0 2020-07-09 …
设生产与销售某种商品的总收入R是产量X的二次函数,经统计知,当产量X=0,1,2时,总收入R=0, 2020-07-11 …
如图所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,导轨间距50cm. 2020-07-21 …
物理场强的叠加场强的叠加,电荷q1在D点的场强大小E1=kq/r^2,其中k为静电力常量,r=0.2 2020-10-31 …
阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是()A.{x∈R|0≤x 2021-01-15 …