早教吧作业答案频道 -->其他-->
如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,EM=22,OD+CD=7,求△OCB的面积.
题目详情
如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;
(2)若BD⊥AC,EM=2
| 2 |
▼优质解答
答案和解析
(1)证明:连接ED、MN,
∵CE、BD是△ABC的中线,
∴E、D是AB、AC中点,
∴ED∥BC,ED=
BC,
∵M、N分别为OB、OC的中点,
∴MN∥BC,MN=
BC,
∴ED∥MN,ED=MN,
∴四边形DEMN是平行四边形,
∴MD和NE互相平分;
(2)由(1)可得DN=EM=2
,
∵BD⊥AC,
∴∠ODC=90°,
∵N是OC的中点,
∴OC=2DN=4
(直角三角形斜边中线等于斜边的一半)
∵OD2+CD2=OC2=32,
(OD+CD)2=OD2+CD2+2OD×CD=72=49,
2OD×CD=49-32=17,
OD×CD=8.5,
∵OB=2OM=2OD,
∴S△OCB=
OB×CD=OD×CD=8.5.
∵CE、BD是△ABC的中线,
∴E、D是AB、AC中点,
∴ED∥BC,ED=
| 1 |
| 2 |
∵M、N分别为OB、OC的中点,
∴MN∥BC,MN=
| 1 |
| 2 |
∴ED∥MN,ED=MN,
∴四边形DEMN是平行四边形,
∴MD和NE互相平分;
(2)由(1)可得DN=EM=2
| 2 |

∵BD⊥AC,
∴∠ODC=90°,
∵N是OC的中点,
∴OC=2DN=4
| 2 |
∵OD2+CD2=OC2=32,
(OD+CD)2=OD2+CD2+2OD×CD=72=49,
2OD×CD=49-32=17,
OD×CD=8.5,
∵OB=2OM=2OD,
∴S△OCB=
| 1 |
| 2 |
看了 如图,已知△ABC的中线BD...的网友还看了以下:
在下列程式的括号内填上适当的项(1)a-b-c+d=a+()=-b-()(2)(-a+b+c)(a 2020-04-07 …
已知a、b、c、d是非零实数,并满足a+b+c−dd=a+b−c+dc=a−b+c+db=−a+b 2020-05-13 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
若非空集合M⊆N={a,b,c,d},则M的个数为8个{a},{b},{c},{d},{a,b}, 2020-05-15 …
线段的比小明认为:(1)a/b=c/d(a+b≠0,c+d≠0),那么a/(b+a)=c/(d+c 2020-05-22 …
A,B,C,D四个数之和为59问:A²+B²+C²+D²A³+B³+C³+D³A^4+B^4+C^ 2020-06-03 …
若a+b+c/d=a+b+d/c=a+c+d/b=a+c+d/a=k1)k=?2)a+b+c+d/ 2020-06-12 …
线性代数问题证明:|1111||abcd||a²b²c²d²|=(a-b)(a-c)(a-d)(b 2020-06-12 …
学数据结构遇到的问题,有6个元素a,b,c,d,e,f依次入栈,下列出栈序列中哪个是不可能的?A) 2020-06-28 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …