早教吧作业答案频道 -->其他-->
(2014•山东)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.
题目详情
(2014•山东)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=| 1 |
| 2 |
(Ⅰ)求证:AP∥平面BEF;
(Ⅱ)求证:BE⊥平面PAC.
▼优质解答
答案和解析
证明:(Ⅰ)连接CE,则
∵AD∥BC,BC=
AD,E为线段AD的中点,
∴四边形ABCE是平行四边形,BCDE是平行四边形,
设AC∩BE=O,连接OF,则O是AC的中点,
∵F为线段PC的中点,
∴PA∥OF,
∵PA⊄平面BEF,OF⊂平面BEF,
∴AP∥平面BEF;
(Ⅱ)∵BCDE是平行四边形,
∴BE∥CD,
∵AP⊥平面PCD,CD⊂平面PCD,
∴AP⊥CD,
∴BE⊥AP,
∵AB=BC,四边形ABCE是平行四边形,
∴四边形ABCE是菱形,
∴BE⊥AC,
∵AP∩AC=A,
∴BE⊥平面PAC.
证明:(Ⅰ)连接CE,则∵AD∥BC,BC=
| 1 |
| 2 |
∴四边形ABCE是平行四边形,BCDE是平行四边形,
设AC∩BE=O,连接OF,则O是AC的中点,
∵F为线段PC的中点,
∴PA∥OF,
∵PA⊄平面BEF,OF⊂平面BEF,
∴AP∥平面BEF;
(Ⅱ)∵BCDE是平行四边形,
∴BE∥CD,
∵AP⊥平面PCD,CD⊂平面PCD,
∴AP⊥CD,
∴BE⊥AP,
∵AB=BC,四边形ABCE是平行四边形,
∴四边形ABCE是菱形,
∴BE⊥AC,
∵AP∩AC=A,
∴BE⊥平面PAC.
看了 (2014•山东)如图,四棱...的网友还看了以下:
计算题(P/A,10%,4)=3.1699(P/F,10%,1)=0.9091(P/A,10%,5 2020-04-07 …
平面内一动点P到点F(2,0)的距离比它到直线x+3=0的距离少1平面内一动点P到点F(2,0)的 2020-06-27 …
条件概率问题P(E|F)=P(EF)/P(F)这个是如何从最原始的公式推导出来的?另外P(EF)我 2020-07-09 …
采用净现值法21092.222066怎么算出来的假设资金成本为10%甲方案的NPV=40200(P 2020-07-14 …
自考.工程经济学.(F/P,8%,5)=1.469(P/F,8%,5)=0.6806(F/A,8% 2020-07-18 …
一)设F为一事件域,若An∈F,n=1,2,...,试证:(1)空集∈F(2)有限并∪Ai∈F,n 2020-07-30 …
已知:四棱锥P-ABCD,底面ABCD是边长为2的菱形,PA⊥平面ABCD,且PA=2,∠ABC= 2020-07-31 …
大学毕业好久都忘了呵呵!1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合 2020-11-04 …
财务管理中的计算题P2=30+40×(P/F,10%,1)+40×(P/F,10%,2)P2=30+ 2020-11-21 …
已知文法G:(1)E→E+T|T(2)T→T*F|F(3)F→P↑F|P(4)P→(E)|i1.已知 2020-12-07 …