早教吧作业答案频道 -->其他-->
(2014•山东)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.
题目详情

1 |
2 |
(Ⅰ)求证:AP∥平面BEF;
(Ⅱ)求证:BE⊥平面PAC.
▼优质解答
答案和解析
证明:(Ⅰ)连接CE,则
∵AD∥BC,BC=
AD,E为线段AD的中点,
∴四边形ABCE是平行四边形,BCDE是平行四边形,
设AC∩BE=O,连接OF,则O是AC的中点,
∵F为线段PC的中点,
∴PA∥OF,
∵PA⊄平面BEF,OF⊂平面BEF,
∴AP∥平面BEF;
(Ⅱ)∵BCDE是平行四边形,
∴BE∥CD,
∵AP⊥平面PCD,CD⊂平面PCD,
∴AP⊥CD,
∴BE⊥AP,
∵AB=BC,四边形ABCE是平行四边形,
∴四边形ABCE是菱形,
∴BE⊥AC,
∵AP∩AC=A,
∴BE⊥平面PAC.

∵AD∥BC,BC=
1 |
2 |
∴四边形ABCE是平行四边形,BCDE是平行四边形,
设AC∩BE=O,连接OF,则O是AC的中点,
∵F为线段PC的中点,
∴PA∥OF,
∵PA⊄平面BEF,OF⊂平面BEF,
∴AP∥平面BEF;
(Ⅱ)∵BCDE是平行四边形,
∴BE∥CD,
∵AP⊥平面PCD,CD⊂平面PCD,
∴AP⊥CD,
∴BE⊥AP,
∵AB=BC,四边形ABCE是平行四边形,
∴四边形ABCE是菱形,
∴BE⊥AC,
∵AP∩AC=A,
∴BE⊥平面PAC.
看了 (2014•山东)如图,四棱...的网友还看了以下:
概率题急求解1设A,B为随机事件且P(A)=0.7,P(A-B)=0.3,求P(A非B非).2设A 2020-04-12 …
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩 2020-05-17 …
两题单链表逆置,求讲解1.p=head->next;head->next=NULL;while(p 2020-06-15 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
1、设p、q是两个数,规定:p△q=3×p-(p+q)÷2,求7△(2△4)2、如果1*5=1、设 2020-07-24 …
如图,点P是函数y=4/x在第一象限的图像上的任意一点,点P关于原点的对称点是P’,过点P做PA平 2020-07-29 …
矩阵A,B相似,A,B矩阵是已知的,那么可逆矩阵P是否唯一?如何求P?如不是,什么情况下会唯一,怎么 2020-11-03 …
已知abc两两相互独立,求证P(a交b交c)=p(a)p(b)p(c)已知ab相互独立,求证a已知a 2020-12-01 …
已知点P(pp,如p-o)是平面直角坐标系上的点.(o)若点P在第一象限的角平分线上,求p的值;(p 2020-12-25 …
若Sn-S(n-1)=n^p,求Sn也就是求1^p+2^p+3^p+.+n^p,p可以是正数,负数, 2021-02-16 …