早教吧作业答案频道 -->其他-->
如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.
题目详情

(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
▼优质解答
答案和解析
证明:(1)∵点D,E,F分别是AB,BC,CA的中点,
∴DE、EF是△ABC的中位线,
∴DE∥AC,EF∥AB,
∴四边形ADEF是平行四边形;
(2)∵AH是边BC上的高,
∴DH=AD,FH=AF,
∴∠BAH=∠AHD,∠CAH=∠AHF,
∴∠DHF=∠BAC,
∵四边形ADEF是平行四边形,
∴∠DEF=∠BAC,
∴∠DHF=∠DEF.
∴DE、EF是△ABC的中位线,
∴DE∥AC,EF∥AB,
∴四边形ADEF是平行四边形;
(2)∵AH是边BC上的高,
∴DH=AD,FH=AF,
∴∠BAH=∠AHD,∠CAH=∠AHF,
∴∠DHF=∠BAC,
∵四边形ADEF是平行四边形,
∴∠DEF=∠BAC,
∴∠DHF=∠DEF.
看了 如图,在△ABC中,点D,E...的网友还看了以下:
过抛物线y^2=2px(>0)的对称轴上的定点M(m,0)作直线AB与抛物线相交与A,B两点1试证明 2020-03-31 …
E是平行四边形ABCD对角线交点,过点A,B,C,D,E分别向直线l引垂线,垂足分别为E是平行四边形 2020-03-31 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
一:已知斜率为1的直线L与双曲线C:X^2/a^2-Y^2/b^2=1(a>0,b>0)相交于B, 2020-06-27 …
已知A,B是抛物线y2=2px(p>0)上的两点,且满足OA垂直OB.1:求证:A,B两点的横坐已 2020-07-01 …
设f(x)在[a,b]上连续且可导,求证存在一点ξ∈(a,b),使f(b)-f(设f(x)在[a, 2020-07-13 …
设A,B,C三点满足向量OC=m*向量OA+n*向量OB,其中O是不在直线AB上的一点,证明A,B 2020-07-24 …
直线a,b是异面直线,A,B,C为直线a上三点,D,E,F是直线b上三点,A',B',C',D', 2020-07-31 …
在反比例函数y=8/x(X大于零)的图象上有两点a,b,且点a的纵坐标为2,点b的横坐标为2,分别 2020-08-01 …
用反证法证明:已知,在同一平面内有三条直线a,b,c,a⊥c,b⊥c.求证:a∥b.证明:假设所求 2020-08-01 …