早教吧作业答案频道 -->数学-->
在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0
题目详情
在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C
在梯形ABCO中,OC∥
AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0,4).点D(4,7)为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.
(1)求直线BC的解析式;
(2)设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;
(3)当t为何值时,△OPD的面积是梯形OABC的面积的 .
在梯形ABCO中,OC∥
AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0,4).点D(4,7)为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.
(1)求直线BC的解析式;
(2)设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;
(3)当t为何值时,△OPD的面积是梯形OABC的面积的 .
▼优质解答
答案和解析
(1)设直线BC的解析式为Y=kx+b,
将C(0,4),B(8,10)代入得:
4=0×k+b10=8×k+b,
解得:k=
34b=4,
即Y=34x+4,
所以直线BC的解析式为:Y=34x+4.
(2)有两种情况:
①当P在OA上运动时;
∴OP=t×1=t,△OPD的边OP上的高是7,
∴△OPD的面积为:
S=12×t×7
即S=72t(0<t≤8),
②当P在AB上运动时:
∵A(8,0),B(8,10),C(0,4),D(4,7),
△ODC的面积为:
S1=12×4×4=8,
△OPA的面积是:
S2=12×8×(t-8)=4t-32,
△DBP的面积是:
S3=12×{10-(t-8)}×(8-4)=36-2t,
四边形OABC的面积是:
S4=12×(4+10)×8=56,
∴△ODP的面积是:
S=S4-S1-S2-S3=56-8-(4t-32)-(36-2t)=-2t+44,
即S=-2t+44(8<t<18),
∴S=72t(0<t≤8)-2t+44(8<t<18);
(3)由(2)可知:
a:72t=38×56,
解得t=6秒,
b:-2t+44=38×56,
解得t=11.5秒,
∴t=6秒或t=11.5秒.
将C(0,4),B(8,10)代入得:
4=0×k+b10=8×k+b,
解得:k=
34b=4,
即Y=34x+4,
所以直线BC的解析式为:Y=34x+4.
(2)有两种情况:
①当P在OA上运动时;
∴OP=t×1=t,△OPD的边OP上的高是7,
∴△OPD的面积为:
S=12×t×7
即S=72t(0<t≤8),
②当P在AB上运动时:
∵A(8,0),B(8,10),C(0,4),D(4,7),
△ODC的面积为:
S1=12×4×4=8,
△OPA的面积是:
S2=12×8×(t-8)=4t-32,
△DBP的面积是:
S3=12×{10-(t-8)}×(8-4)=36-2t,
四边形OABC的面积是:
S4=12×(4+10)×8=56,
∴△ODP的面积是:
S=S4-S1-S2-S3=56-8-(4t-32)-(36-2t)=-2t+44,
即S=-2t+44(8<t<18),
∴S=72t(0<t≤8)-2t+44(8<t<18);
(3)由(2)可知:
a:72t=38×56,
解得t=6秒,
b:-2t+44=38×56,
解得t=11.5秒,
∴t=6秒或t=11.5秒.
看了 在梯形ABCO中,OC∥AB...的网友还看了以下:
把下面的式子变成除数是整数的除法算式75.8÷o.1=÷1;&十bsp;o.14÷o.18=÷;1 2020-04-07 …
△+O=82△+口=72口+O=86求△口O分别是多少?△+O=82△+口=72口+O=86求△口 2020-05-19 …
△o-☆=4☆-o△=8△×o×☆=210(☆-o)×(☆△)=希望你们能看得懂.我需要一个解题的 2020-07-09 …
如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补,将射线OA,OC同时绕点O分别以每秒1 2020-07-24 …
(本小题满分12分)如图,已知平行六面体ABCD—A1B1C1D1的底面为矩形,O1,O分别为上 2020-07-30 …
相似三角形问题已知圆O与圆A相交于C,D两点.A,O分别是两圆的圆心,三角形ABC内界于圆O,弦C 2020-08-03 …
已知AB是圆O的直径,弦CD垂直AB于E,F是DC延长线上一点,FA、FB与圆O分别...已知AB是 2020-11-03 …
(2014•玉林二模)如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于 2020-11-13 …
直接写出得数7.4-2=2.6+0.7=84÷2.1=0.9-0.9÷9=3.25×4=0.8×0. 2020-11-26 …
关于一道题对功率的提问小环O和O′分别套在不动的竖直杆AB和A′B′上,一根不可伸长的绳子穿过环O′ 2021-01-10 …