早教吧作业答案频道 -->其他-->
如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度
题目详情
如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+
=0,过C作CB⊥x轴于B.
(1)求△ABC的面积.
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.
(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

b-2 |
(1)求△ABC的面积.
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.
(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

▼优质解答
答案和解析
(1)∵(a+2)2+
=0,
∴a=2=0,b-2=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2),
∴△ABC的面积=
×2×4=4;
(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,
过E作EF∥AC,如图①,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=
∠CAB=∠1,∠4=
∠ODB=∠2,
∴∠AED=∠1+∠2=
(∠CAB+∠ODB)=45°;

(3)①当P在y轴正半轴上时,如图②,
设P(0,t),
过P作MN∥x轴,AN∥y轴,BM∥y轴,
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4,
∴
-t-(t-2)=4,解得t=3,
②当P在y轴负半轴上时,如图③
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4
∴
+t-(2-t)=4,解得t=-1,
∴P(0,-1)或(0,3).
b-2 |
∴a=2=0,b-2=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2),
∴△ABC的面积=
1 |
2 |
(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,
过E作EF∥AC,如图①,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=
1 |
2 |
1 |
2 |
∴∠AED=∠1+∠2=
1 |
2 |

(3)①当P在y轴正半轴上时,如图②,
设P(0,t),
过P作MN∥x轴,AN∥y轴,BM∥y轴,
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4,
∴
4(t-2+t) |
2 |
②当P在y轴负半轴上时,如图③
∵S△APC=S梯形MNAC-S△ANP-S△CMP=4
∴
4(-t+2-t) |
2 |
∴P(0,-1)或(0,3).
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
急救!若a>0,b>0,且a+b=c.求证:(1)当r>1时a^r+b^r<c^r;(2)当r<1 2020-04-05 …
已知a、b、c是三个不同的非零自然数,且a=b×c,那么下面说法错误的是()A.a一定是b的倍数B 2020-04-09 …
已知a、b、c是三个不同的非零自然数,且a=b×c,那么下面说法错误的是()A.a一定是b的倍数B 2020-04-09 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
设是不为0的复数,且a+b+c=0 ,a(平方)+b(平方)+c(平方)=0 恒成立的正整数N为好 2020-06-27 …
100%收购公司其中一名法人股东涉及到的问题事实:A.B.C.D为四个法人。A.B公司为C公司的股东 2020-11-06 …
小学六年级数学题已知ax6/5=9/10xb=13/13xc=1,并且a,b,c,不等于0,试把a, 2020-11-20 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
这里有字数限制,所以写在下面了当A<500,且A*B<20,则C=20,否则C=A*B;当A<200 2020-12-22 …
设a、b、c为实数,且a+b+c=2倍的(根号a+1)+4倍的(根号b+1)+b倍的(根号c-2)- 2020-12-31 …