早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•江干区一模)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2k,1-k,-1-k],对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值是.

题目详情
(2012•江干区一模)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2k,1-k,-1-k],对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值是______.
▼优质解答
答案和解析
∵函数y=ax2+bx+c的特征数为[2k,1-k,-1-k],
∴二次函数的解析式为:y=2kx2+(1-k)x-1-k,
∵对于任意负实数k,当x<m时,y随x的增大而增大,
∵k为负数,即k<0,
∴2k<0,即函数y=2kx2+(1-k)x-1-k表示的是开口向下的二次函数,
∴在对称轴的左侧,y随x的增大而增大,
∵对于任意负实数k,当x<m时,y随x的增大而增大,
∴x=-
b
2a
=-
1−k
4k
>0,
∴m≤-
1−k
4k
=
1
4
-
1
4k

∵k<0,
∴-
1
4k
>0,
1
4
-
1
4k
1
4

∵m≤
1
4
-
1
4k
对一切k<0均成立,
∴m≤-
1−k
4k
的最小值,
∴m的最大整数值是m=0.
故答案为:0.
看了 (2012•江干区一模)定义...的网友还看了以下: