早教吧作业答案频道 -->其他-->
(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时
题目详情

(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).
设直线CD的解析式为y=kx+b(k≠0),
将C(0,1),D(1,0)代入得:
,
解得:b=1,k=-1,
∴直线CD的解析式为:y=-x+1.
(2)设抛物线的解析式为y=a(x-2)2+3,
将C(0,1)代入得:1=a×(-2)2+3,解得a=−
.
∴y=−
(x-2)2+3=−
x2+2x+1.
(3)证明:由题意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
∴点E的坐标为(4,1).
如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),
∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.
(4)存在.
如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)
如答图③所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(0,-1).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″=
=
=2
设直线CD的解析式为y=kx+b(k≠0),
将C(0,1),D(1,0)代入得:
|
解得:b=1,k=-1,
∴直线CD的解析式为:y=-x+1.
(2)设抛物线的解析式为y=a(x-2)2+3,
将C(0,1)代入得:1=a×(-2)2+3,解得a=−
1 |
2 |
∴y=−
1 |
2 |
1 |
2 |

(3)证明:由题意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
∴点E的坐标为(4,1).
如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),
∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,

∴△CEQ∽△CDO.
(4)存在.
如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)

如答图③所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(0,-1).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″=
NC′2+NC″2 |
42+62 |
|
看了 (2013•张家界)如图,抛...的网友还看了以下:
已知:点A(m,2)和点B(2,n)都在反比例函数y=(m+3)/x的图像上.(1)求m与n的值; 2020-04-27 …
如图所示,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A,C两点),过P点作一直线与 2020-05-13 …
如图,已知A(8,0),B(2,0)两点,以AB为直径的半圆与Y轴正半轴交于点C,求经过A,B,C 2020-05-16 …
平面直角坐标系xoy中,抛物线y=ax^2+bx+c与x轴的其中一个交点A的坐标为(4,0),与y 2020-05-23 …
已知抛物线y=4\3x²+bx+c经过A(3,0)、B(0,4)(1)求此抛物线的解析式;(2)若 2020-06-14 …
已知椭圆方程x^2+2y^2=1.设A为椭圆长轴的左端点?已知椭圆方程x^2+2y^2=1.设A为 2020-06-29 …
已知直线l上有A,B,C三点,过这三点分别作三条互相平行的直线a,b,c,求证:l,a,b,c,四 2020-07-21 …
.已知点A(5,0),B(-4,0).1.在y轴上是否存在点C,使S△ABC的面积为18?若存在, 2020-07-31 …
二.已知点A(5,0),B(-4,0).1.在y轴上是否存在点C求点C,使S△ABC的面积为18? 2020-07-31 …
又是一道数学题设函数y=x+4的图像与x轴交于A点,函数y=-3x-6的图像与x轴交于B,两个函数的 2020-11-03 …