早教吧作业答案频道 -->其他-->
已知a=sin15°cos15°,b=cos2π6−sin2π6,c=tan30°1−tan230°,则a,b,c的大小关系是()A.a<b<cB.a>b>cC.c>a>bD.a<c<b
题目详情
已知a=sin15°cos15°,b=cos2
−sin2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bb=cos2
−sin2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bs2
−sin2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bs2
−sin2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b2
−sin2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
π π 6 6 n2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bn2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b2
,c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
π π 6 6 c=
,则a,b,c的大小关系是( )
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
tan30° tan30° 1−tan230° 1−tan230° tan230°tan230°230°
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bb=cos2
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bs2
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bs2
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b2
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<bn2
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b2
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
| π |
| 6 |
| tan30° |
| 1−tan230° |
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b
| tan30° |
| 1−tan230° |
▼优质解答
答案和解析
∵a=sin15°cos15°=
sin30°=
,b=cos2
−sin2
=cos
=
,c=
=
tan60°=
,
∴a<b<c.
故选:A.
1 1 12 2 2sin30°=
,b=cos2
−sin2
=cos
=
,c=
=
tan60°=
,
∴a<b<c.
故选:A.
1 1 14 4 4,b=cos2
−sin2
=cos
=
,c=
=
tan60°=
,
∴a<b<c.
故选:A. b=cos2
−sin2
=cos
=
,c=
=
tan60°=
,
∴a<b<c.
故选:A. 2
π π π6 6 6−sin2
=cos
=
,c=
=
tan60°=
,
∴a<b<c.
故选:A. 2
π π π6 6 6=cos
=
,c=
=
tan60°=
,
∴a<b<c.
故选:A.
π π π3 3 3=
,c=
=
tan60°=
,
∴a<b<c.
故选:A.
1 1 12 2 2,c=
=
tan60°=
,
∴a<b<c.
故选:A. c=
tan30° tan30° tan30°1−tan230° 1−tan230° 1−tan230°230°=
tan60°=
,
∴a<b<c.
故选:A.
1 1 12 2 2tan60°=
,
∴a<b<c.
故选:A.
3 3 32 2 2,
∴a<b<c.
故选:A.
| 1 |
| 2 |
| 1 |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A.
| 1 |
| 2 |
| 1 |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A.
| 1 |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A. b=cos2
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A. 2
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A. 2
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A.
| π |
| 3 |
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A.
| 1 |
| 2 |
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A. c=
| tan30° |
| 1−tan230° |
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A.
| 1 |
| 2 |
| ||
| 2 |
∴a<b<c.
故选:A.
| ||
| 2 |
| 3 |
| 3 |
| 3 |
∴a<b<c.
故选:A.
看了 已知a=sin15°cos1...的网友还看了以下:
C(0,n)+C(1,n)+C(2,n)+...+C(n-1,n)+C(n,n)=2^n用数学归纳 2020-06-30 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
∑[k=0,∞]C(k,N)C(n-k,M-N)=C(n,M)∑[k=0,n](1-p)^k=1/ 2020-07-16 …
组合数题目求解下面这个式子:C(n-1,2)+2×C(n-2,2)+3×C(n-3,2)+……+( 2020-07-22 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
一道二项式的题目设n是满足C(n,0)+C(n,1)+2C(n,2)+……+nC(n,n)C(n, 2020-07-31 …
公式难题,abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?……………… 2020-08-04 …
证明组合性质:C(n+1,m)=C(n,m)+C(n,m-1)C(n+1,m)=(n+1)!/m!( 2020-11-01 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …
X∪Y=〈1,2,…,n〉求集合方程有序解的个数:X∪Y=〈1,2,…,n〉在此鞠躬致谢.我算出来是 2021-01-13 …