早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对二元函数z=f(x,y),下列哪些说法正确()A.在点(x,y)连续,则该点偏导数一定存在B.在点(x,y)偏导数存在,则该点一定连续C.在点(x,y)偏导数存在,则该点一定可微D

题目详情
对二元函数z=f(x,y),下列哪些说法正确(  )

A.在点(x,y)连续,则该点偏导数一定存在
B.在点(x,y)偏导数存在,则该点一定连续
C.在点(x,y)偏导数存在,则该点一定可微
D.在点(x,y)可微,则该点偏导数一定存在
▼优质解答
答案和解析
①选项A.连续,不能保证偏导数存在
f(x,y)=
(x2+y)sin(
1
x2+y2
)
,(x,y)≠(0,0)
0,(x,y)=(0,0)
,则f(x,y)在点(0,0)连续,但是
f′y(0,0)=
lim
y→0
f(0,y)−f(0,0)
y
=
lim
y→0
ysin
1
|y|
y
=
lim
y→0
sin
1
|y|
不存在
∴f(x,y)在点(0,0)对y的偏导数不存在
故A错误;
②选项B和C.偏导数存在,并不一定保证函数连续.如
f(x,y)=
xy
x2+y2
,(x,y)≠(0,0)
0,(x,y)=(0,0)

由定义可以求出f′x(0,0)=f′y(0,0)=0,但
lim
x→0
y→0
f(x,y)不存在,
因而也就不连续,当然也就不可微了
故B、C错误;
③选项D.
故选:D.由可微,得△f=f(x+△x,y+△y)-f(x,y)=A△x+B△y+o(ρ)中,令△y=0
则有f(x+△x,y)-f(x,y)=A△x+o(|△x|),两端处于△x,并令△x→0,得
lim
△x→0
f(x+△x,y)−f(x,y)
△x
=fx(x,y),同理fy(x,y)也存在.
即可微⇒偏导数存在
故D正确
故选:D.