早教吧 育儿知识 作业答案 考试题库 百科 知识分享

cosxcosy+sinxsiny=1/2.sin2x+sin2y=2/3.则sin(x+y)为多少

题目详情
cosxcosy+sinxsiny=1/2.sin2x+sin2y=2/3.则sin(x+y)为多少
▼优质解答
答案和解析
不用和差化积方法 证明如下
sin2x+sin2y=sin[(x+y)+(x-y)]+sin[(x+y)-(x-y)]=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)+sin(x+y)cos(x-y)-cos(x+y)sin(x-y)=2sin(x+y)cos(x-y)=2/3
∴sin(x+y)cos(x-y)=1/3 由cosxcosy+sinxsiny=1/2 cosx-y=1/2
∴sinx+y=2/3