早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求证:tan2x+1tan2x=2(3+cos4x)1−cos4x.

题目详情
求证:tan2x+
1
tan2x
=
2(3+cos4x)
1−cos4x
▼优质解答
答案和解析
证明:左边=
sin2x
cos2x
+
cos2x
sin2x

=
sin4x+cos4x
sin2xcos2x

=
(sin2x+cos2x)2−2sin2xcos2x
1
4
sin22x

=
8−4sin22x
1−cos4x
=
4+4cos22x
1−cos4x

=
4+2(1+cos4x)
1−cos4x
=
2(3+cos4x)
1−cos4x

=右边.
∴tan2x+
1
tan2x
=
2(3+cos4x)
1−cos4x