早教吧作业答案频道 -->其他-->
如图,在平行四边形ABCD中,延长CD到E,使DE=DC,连接BE交AD于F,交AC于G.(1)若BE为∠ABC的平分线,求证:BC=AF+DE;(2)若BC=2AB,DE=1,∠ABC=60°,求GF的长.
题目详情

(1)若BE为∠ABC的平分线,求证:BC=AF+DE;
(2)若BC=2AB,DE=1,∠ABC=60°,求GF的长.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=CD,
∴∠AFB=∠CBF,
∵BE为∠ABC的平分线,
∴∠ABF=∠CBF,
∴∠AFB=∠ABF,
∴AF=AB,
∴CD=AF,
同理:BC=CE,
∴BC=CE=CD+DE=AF+DE;
(2)在BC上截取BN=AB=1,连接AN,
∵∠ABC=60°,
∴△ANB是等边三角形,
∴AN=1=BN,∠ANB=∠BAN=60°,
∵BC=2AB=2,
∴CN=1=AN,
∴∠ACN=∠CAN=
×60°=30°,
∴∠BAC=90°.
∴∠CBF=∠E=30°,
∴∠ABF=∠CBF=30°,
∴BG=
=
,
∴AF=AB=DE=1,BC=2AB=2DE=2,
∵△AGF∽△CGB,
∴GF:BG=AF:BC=1:2,
∴GF=
.
∴AD∥BC,AD=CD,
∴∠AFB=∠CBF,
∵BE为∠ABC的平分线,
∴∠ABF=∠CBF,
∴∠AFB=∠ABF,
∴AF=AB,
∴CD=AF,
同理:BC=CE,
∴BC=CE=CD+DE=AF+DE;
(2)在BC上截取BN=AB=1,连接AN,

∵∠ABC=60°,
∴△ANB是等边三角形,
∴AN=1=BN,∠ANB=∠BAN=60°,
∵BC=2AB=2,
∴CN=1=AN,
∴∠ACN=∠CAN=
1 |
2 |
∴∠BAC=90°.
∴∠CBF=∠E=30°,
∴∠ABF=∠CBF=30°,
∴BG=
AB |
cos30° |
2
| ||
3 |
∴AF=AB=DE=1,BC=2AB=2DE=2,
∵△AGF∽△CGB,
∴GF:BG=AF:BC=1:2,
∴GF=
| ||
3 |
看了 如图,在平行四边形ABCD中...的网友还看了以下:
已知a,b,c成等比数列,如果a,x,b和b,y,c都成等差数列,则a/x + c/y=?下面是某 2020-05-16 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
这道数学题为什么这么写呢设abcd都是有理数,若a+b的绝对值=4,c+d的绝对值=2,且a-c+ 2020-07-13 …
高二数学题,帮忙解决,要步骤的(1)设a,b,c属于R,a+b+c=0,abc0.(2)设a,b, 2020-07-22 …
用公式法化简逻辑函数F=AB+A'C+B'CF=AB+A'C+B'C=AB+A'C(B+B’)+B 2020-08-01 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-08-01 …
3角形3边abc求证:abc≥(a+b-c)(a+c-b)(b+c-a)假设x=a+b-c>0y=a 2020-11-01 …
直线a、b、c在同一平面内,(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a∥b,b∥c,那么a∥ 2020-11-02 …
类比a(b+c)=ab+ac得到下列结论:①lg(a+b)=lga+lgb;②sin(α+β)=si 2020-11-29 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …