早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x和y=k2x的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下

题目详情
(2014•玉林)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=
k1
x
和y=
k2
x
的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
AM
CN
=
|k1|
|k2|

②阴影部分面积是
1
2
(k1+k2);
③当∠AOC=90°时,|k1|=|k2|;
④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.
其中正确的结论是______(把所有正确的结论的序号都填上).
▼优质解答
答案和解析
作AE⊥y轴于E,CF⊥y轴于F,如图,
∵四边形OABC是平行四边形,
∴S△AOB=S△COB
∴AE=CF,
∴OM=ON,
∵S△AOM=
1
2
|k1|=
1
2
OM•AM,S△CON=
1
2
|k2|=
1
2
ON•CN,
AM
CN
=
|k1|
|k2|
,故①正确;
∵S△AOM=
1
2
|k1|,S△CON=
1
2
|k2|,
∴S阴影部分=S△AOM+S△CON=
1
2
(|k1|+|k2|),
而k1>0,k2<0,
∴S阴影部分=
1
2
(k1-k2),故②错误;
当∠AOC=90°,
∴四边形OABC是矩形,
∴不能确定OA与OC相等,
而OM=ON,
∴不能判断△AOM≌△CNO,
∴不能判断AM=CN,
∴不能确定|k1|=|k2|,故③错误;
若OABC是菱形,则OA=OC,
而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=-k2
∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.
故答案为:①④.