早教吧作业答案频道 -->其他-->
如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写
题目详情
如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.

(1)写出点C,D的坐标并求出四边形ABDC的面积.
(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.

(1)写出点C,D的坐标并求出四边形ABDC的面积.
(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.
▼优质解答
答案和解析
(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,
∴点C的坐标为(0,2),点D的坐标为(6,2);
四边形ABDC的面积=2×(4+2)=12;
(2)存在.
设点E的坐标为(x,0),
∵△DEC的面积是△DEB面积的2倍,
∴
×6×2=2×
×|4-x|×2,解得x=1或x=7,
∴点E的坐标为(1,0)和(7,0);
(3)当点F在线段BD上,作FM∥AB,如图1,
∵MF∥AB,
∴∠2=∠FOB,
∵CD∥AB,
∴CD∥MF,
∴∠1=∠FCD,
∴∠OFC=∠1+∠2=∠FOB+∠FCD;
当点F在线段DB的延长线上,作FN∥AB,如图2,
∵FN∥AB,
∴∠NFO=∠FOB,
∵CD∥AB,
∴CD∥FN,
∴∠NFC=∠FCD,
∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;
同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.
∴点C的坐标为(0,2),点D的坐标为(6,2);
四边形ABDC的面积=2×(4+2)=12;
(2)存在.
设点E的坐标为(x,0),
∵△DEC的面积是△DEB面积的2倍,
∴
1 |
2 |
1 |
2 |
∴点E的坐标为(1,0)和(7,0);
(3)当点F在线段BD上,作FM∥AB,如图1,
∵MF∥AB,
∴∠2=∠FOB,
∵CD∥AB,
∴CD∥MF,

∴∠1=∠FCD,
∴∠OFC=∠1+∠2=∠FOB+∠FCD;
当点F在线段DB的延长线上,作FN∥AB,如图2,
∵FN∥AB,
∴∠NFO=∠FOB,
∵CD∥AB,
∴CD∥FN,
∴∠NFC=∠FCD,
∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;
同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
2^[1+(1/2)^log25]=?我解的是2^[1+(2^log25)^-1]=2^(6/5) 2020-05-13 …
下列说法错误的是()A.x2−x一定是非负数B.当x<2时,(x−1)2=1-xC.当x<0时,− 2020-05-14 …
请找出函数f(x,y)=ln(x^2+y^2)在点(2,1)位于矢量v=(-1,2)的方向的方向导 2020-05-16 …
在一个等腰三角形中,顶角与一个底角的度数比是2:1,这个三角形的腰是2分米,在一个等腰三角形中,顶 2020-05-21 …
.函数..用等比数列解也可以.,..定义在正整数集上的的函数y=f(x)对任意a,b∈N,都有f( 2020-06-02 …
在直角坐标系中,A、B两点的坐标分别是(-2,1)和(1,5),点P在x轴,且点P到A、B两点的4 2020-06-14 …
已知二次函數f(x)=ax^2-(a+2)x+1,若a为整數,且函數f(x)在(-2,-1)上恰有 2020-07-13 …
已知2=2,2+5=7=1/2*(2+5)*2,2+5+8=15=1/2*(2+8)*3,2+5+ 2020-07-19 …
f={(1,2),(2,3),(3,2)}这个函数的反函数是{(2,1),(3,2),(2,只有一 2020-07-30 …
cos2x-2(2a+1)cosx+2a^2+2a+1=0在[0,2π)内有2不同解,求a范围.设 2020-07-31 …