早教吧作业答案频道 -->数学-->
如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是三角形;(2)在点D的运动过程中,△ECD
题目详情
如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.

(1)当DE∥BC时,△ACD的形状按角分类是______三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.

(1)当DE∥BC时,△ACD的形状按角分类是______三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.
▼优质解答
答案和解析
(1)△ACD是直角三角形.理由如下:
∵DE∥BC,
∴∠BCD=∠CDE=30°,
∵∠ACB=120°,
∴∠ACD=120°-30°=90°,
∴△ACD是直角三角形.
故答案为:直角.
(2)△ECD可以是等腰三角形.理由如下:
①当∠CDE=∠ECD时,EC=DE,
∴∠ECD=∠CDE=30°,
∵∠AED=∠ECD+∠CDE,
∴∠AED=60°,
②当∠ECD=∠CED时,CD=DE,
∵∠ECD+∠CED+∠CDE=180°,
∴∠CED=
=
=75°,
∴∠AED=180°-∠CED=105°,
③当∠CED=∠CDE时,EC=CD,
∠ACD=180°-∠CED-∠CDE=180°-30°-30°=120°,
∵∠ACB=120°,
∴此时,点D与点B重合,不合题意.
综上,△ECD可以是等腰三角形,此时∠AED的度数为60°或105°.
∵DE∥BC,
∴∠BCD=∠CDE=30°,
∵∠ACB=120°,
∴∠ACD=120°-30°=90°,
∴△ACD是直角三角形.
故答案为:直角.
(2)△ECD可以是等腰三角形.理由如下:
①当∠CDE=∠ECD时,EC=DE,
∴∠ECD=∠CDE=30°,
∵∠AED=∠ECD+∠CDE,
∴∠AED=60°,
②当∠ECD=∠CED时,CD=DE,
∵∠ECD+∠CED+∠CDE=180°,
∴∠CED=
180°−∠CDE |
2 |
180°−30° |
2 |
∴∠AED=180°-∠CED=105°,
③当∠CED=∠CDE时,EC=CD,
∠ACD=180°-∠CED-∠CDE=180°-30°-30°=120°,
∵∠ACB=120°,
∴此时,点D与点B重合,不合题意.
综上,△ECD可以是等腰三角形,此时∠AED的度数为60°或105°.
看了 如图,△ABC中,AC=BC...的网友还看了以下:
已知a/b=c/d=e/f=2,当b+d≠0时,a+c/b+d=;当b+d+f≠0时,a+c+e/ 2020-05-14 …
在直角坐标系中,已知点A(-2.0),B(0,4)C(0.3).过C作直线交X轴于D.使以D.O. 2020-06-02 …
已知关于x的方程x^2+ax+b=0和x^2+cx+d=0均无实数根,判别方程2x^2+(a+c) 2020-06-03 …
若x^2+ax+b=0与x^2+cx+d=0有一公共根,那么能否有以下结论:(a+c)x+(b+d 2020-07-09 …
a,b,c,d为实数,x^2+ax+b=0,x^2+cx+d=0的根的模都小于1,证明x^2+1/ 2020-07-19 …
a,b,c,d为实数,x^2+ax+b=0,x^2+cx+d=0的根的模都小于1,证明x^2+1/ 2020-07-19 …
设A={x|x是锐角三角形},B=(0,1),从A到B的映射是“求正弦”,与A中的元素60°相对应 2020-07-26 …
已知方程x~2+ax+b=0,2+cx+d=0无实数根判定方程2x~2+(a+c)x+(b+d)= 2020-07-28 …
已知z1=a+bi,z2=c+di(a,b,c,d∈R),若z1+z2为纯虚数,则有()A.a-c 2020-08-01 …
关于平行四边形的题目.B.D是平行四边形的对角线EF所在直线上的点,且ED=BF.链接AB.BC. 2020-08-01 …