早教吧作业答案频道 -->数学-->
如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是三角形;(2)在点D的运动过程中,△ECD
题目详情
如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.

(1)当DE∥BC时,△ACD的形状按角分类是______三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.

(1)当DE∥BC时,△ACD的形状按角分类是______三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.
▼优质解答
答案和解析
(1)△ACD是直角三角形.理由如下:
∵DE∥BC,
∴∠BCD=∠CDE=30°,
∵∠ACB=120°,
∴∠ACD=120°-30°=90°,
∴△ACD是直角三角形.
故答案为:直角.
(2)△ECD可以是等腰三角形.理由如下:
①当∠CDE=∠ECD时,EC=DE,
∴∠ECD=∠CDE=30°,
∵∠AED=∠ECD+∠CDE,
∴∠AED=60°,
②当∠ECD=∠CED时,CD=DE,
∵∠ECD+∠CED+∠CDE=180°,
∴∠CED=
=
=75°,
∴∠AED=180°-∠CED=105°,
③当∠CED=∠CDE时,EC=CD,
∠ACD=180°-∠CED-∠CDE=180°-30°-30°=120°,
∵∠ACB=120°,
∴此时,点D与点B重合,不合题意.
综上,△ECD可以是等腰三角形,此时∠AED的度数为60°或105°.
∵DE∥BC,
∴∠BCD=∠CDE=30°,
∵∠ACB=120°,
∴∠ACD=120°-30°=90°,
∴△ACD是直角三角形.
故答案为:直角.
(2)△ECD可以是等腰三角形.理由如下:
①当∠CDE=∠ECD时,EC=DE,
∴∠ECD=∠CDE=30°,
∵∠AED=∠ECD+∠CDE,
∴∠AED=60°,
②当∠ECD=∠CED时,CD=DE,
∵∠ECD+∠CED+∠CDE=180°,
∴∠CED=
180°−∠CDE |
2 |
180°−30° |
2 |
∴∠AED=180°-∠CED=105°,
③当∠CED=∠CDE时,EC=CD,
∠ACD=180°-∠CED-∠CDE=180°-30°-30°=120°,
∵∠ACB=120°,
∴此时,点D与点B重合,不合题意.
综上,△ECD可以是等腰三角形,此时∠AED的度数为60°或105°.
看了 如图,△ABC中,AC=BC...的网友还看了以下:
平面直角坐标系中,A(4,8)、C(0,6),过A点作AB⊥x轴于B,平面直角坐标系中,A(4,8 2020-05-15 …
进入污水管道使用的防毒面具必须是C。A.过滤式B.活性炭式C.压缩空气式D.隔离式 2020-05-27 …
已知:△ABC中,AB=AC,角BAC=90°.分别过B,C作经过A点的直线的垂线,垂足分别为D, 2020-06-03 …
等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、 2020-06-23 …
(2010•楚雄州)已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为, 2020-07-21 …
在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、 2020-07-22 …
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为5,过点C作⊙A的切线 2020-07-26 …
下列语句中,是命题的是()A.两点确定一条直线吗B.在线段AB上任取一点C.作∠A的平分线AMD. 2020-07-29 …
负载电路一旦出现()时,继电器马上不能工作A过电压B欠电压C电路负载电流过低D电路负载电流过大 2021-01-10 …
图表示在人体某些细胞内发生的一些生化反应,有关叙述正确的是()A.a和f过程都是在细胞质基中完成的B 2021-01-22 …