早教吧作业答案频道 -->数学-->
已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是(2)如图2,当点P在AB的延长线
题目详情
已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F分别是AB和PC的中点,联结EF交PD于点Q.
(1)如图1,当点P与点B重合时,△QPE的形状是___
(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;
(3)当点Q在边BC上时,求BP的长.

(1)如图1,当点P与点B重合时,△QPE的形状是___
(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;
(3)当点Q在边BC上时,求BP的长.

▼优质解答
答案和解析
(1)△QPE的形状是等腰直角三角形,
理由:在正方形ABCD中,
∵AB=BC,∠ABC=90°,
∵点P与点B重合,
∴AP=PC,∠APC=90°,
∵点E、F分别是AB和PC的中点,
∴PE=
AP,PF=
PC,
∴PE=PF,
∴△QPE是等腰直角三角形;
故答案为:等腰直角三角形;
(2)延长BA到点M,使得AM=BP,连接CM,
∵AE=BE,
∴AE+AM=BE+BP,
即EM=EP,
∵PF=CF,
∴EF=
MC,
∵四边形ABCD是正方形,
∴∠MBC=90°,AB=BC,
∵AB=2,BP=AM=x,
∴BM=2+x.
∴MC=
=
,
∴EF=
,
∴y=
(x>0);
(3)当点Q在边BC上时,由(2)可知EF∥MC,
∴∠M=∠QEB,
∵在△ADP和△BCM中,
,
∴△ADP≌△BCM,
∴∠M=∠APD,
∴∠QEB=∠APD,
∴QE=QP,
∵QB⊥PE,
∴BP=BE=
AB=1.
理由:在正方形ABCD中,
∵AB=BC,∠ABC=90°,
∵点P与点B重合,
∴AP=PC,∠APC=90°,
∵点E、F分别是AB和PC的中点,
∴PE=
1 |
2 |
1 |
2 |
∴PE=PF,
∴△QPE是等腰直角三角形;
故答案为:等腰直角三角形;
(2)延长BA到点M,使得AM=BP,连接CM,
∵AE=BE,
∴AE+AM=BE+BP,
即EM=EP,
∵PF=CF,
∴EF=
1 |
2 |
∵四边形ABCD是正方形,
∴∠MBC=90°,AB=BC,

∵AB=2,BP=AM=x,
∴BM=2+x.
∴MC=
BM2+BC2 |
4+(x+2)2 |
∴EF=
1 |
2 |
x2+4x+8 |
∴y=
1 |
2 |
x2+4x+8 |
(3)当点Q在边BC上时,由(2)可知EF∥MC,
∴∠M=∠QEB,
∵在△ADP和△BCM中,
|
∴△ADP≌△BCM,
∴∠M=∠APD,
∴∠QEB=∠APD,
∴QE=QP,
∵QB⊥PE,
∴BP=BE=
1 |
2 |
看了 已知:在正方形ABCD中,A...的网友还看了以下:
求曲线上点(x,y)处的切线的斜率时,可转化为函数,利用导数知识可得k=f'(x)怎么得到的,若曲 2020-05-13 …
给1001)当A.B两点中有一点在原点时,不妨设A在原点,|AB|=|OB|=|b|=|a-b|. 2020-05-16 …
阅读下面材料:已知点A.B在数轴上分别表示有理数a.b,A.B两点之间的距离表示为|AB|.(1) 2020-05-16 …
阅读下面材料.阅读下面材料:已知点A.B在数轴上分别表示有理数a.b,A.B两点之间的距离表示为| 2020-06-23 …
请阅读下面材料:已知点A.B在数轴上分别表示有理数a.b,A.B两点之间的距离表示为/AB/(在这 2020-08-03 …
甲同学设计了如下实验装置验证一氧化碳的部分性质并验证产物.实验时,在点燃B处酒精灯之前先通入一氧化碳 2020-11-07 …
练习卷上有题如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?点AB分别在左右是可以成一条线 2020-11-11 …
如图,直线a‖b,A,C是直线a上的两点,B,D是直线b上的两点,AB⊥b.试图比较线段CD与AB的 2021-01-15 …
七年级的数学题,很急啊,拜托了!若数轴上的三个点ABC分别表示abc,且点C在点AB之间,试说明a- 2021-01-22 …
金属在人们的生活中作用巨大;兴趣小组的同学在实验室里围绕金属做了如下探究:(一)甲组同学组装了如下实 2021-02-19 …