早教吧作业答案频道 -->数学-->
1的二次方加2的二次方一直加到n的二次方
题目详情
1的二次方加2的二次方一直加到n的二次方
▼优质解答
答案和解析
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
看了 1的二次方加2的二次方一直加...的网友还看了以下:
我们知道在十进制加法中,逢十进一如9+8=17,也可写成9(10)+8(10)=17(10);在四 2020-05-22 …
如果一棵二叉树结点的前序序列是M、N、P、Q,后序序列是Q、P、N、M,则该二叉树结点的对称序序列( 2020-05-23 …
已知下列n(n为正整数)歌关于X的一元二次方程X^2-1=0----1X^2+X-2=0----2 2020-06-02 …
nn+2这个怎么解的啊,为什么n=11或n=-13n这个方程是一元二次方程还是...nn+2=14 2020-07-19 …
风能是一种绿色能源.如图所示,叶片在风力推动下转动,带动发电机发电,M、N为同一个叶片上的两点,下 2020-07-29 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
月;月份(n.)一月(n.)二月(n.)三月(n.)四月(n.)五月(n.)六月(n.)七月(n. 2020-08-03 …
月;月份(n.)一月(n.)二月(n.)三月(n.)四月(n.)五月(n.)六月(n.)七月(n. 2020-08-03 …
如果一个数列的任意连续三项均能构成一个三角形的三边长则称此数列为三角形数列已知数列an满足an=nd 2020-11-20 …
如何推算出以下数学公式:N乘N加D的和分之D等于N分之一减去N加D的和分之一N乘N加D的和分之一等于 2020-12-17 …
相关搜索:1的二次方加2的二次方一直加到n的二次方