早教吧作业答案频道 -->其他-->
(2014•东海县模拟)我们定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,在△ABC中,A
题目详情
(2014•东海县模拟)我们定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.

(1)如图1,在△ABC中,AB=BC,且BC≠AC,请你在图1中用尺规作图作出△ABC的一条“等分积周线”;
(2)在图1中,过点C能否画出一条“等分积周线”?若能,说出确定的方法‘若不能,请说明理由.
(3)如图2,四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;
(4)如图3,在△ABC中,AB=BC=6cm,AC=8cm,请你不过△ABC的顶点,画出△ABC的一条“等分积周线”,并说明理由.

(1)如图1,在△ABC中,AB=BC,且BC≠AC,请你在图1中用尺规作图作出△ABC的一条“等分积周线”;
(2)在图1中,过点C能否画出一条“等分积周线”?若能,说出确定的方法‘若不能,请说明理由.
(3)如图2,四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;
(4)如图3,在△ABC中,AB=BC=6cm,AC=8cm,请你不过△ABC的顶点,画出△ABC的一条“等分积周线”,并说明理由.
▼优质解答
答案和解析
(1)如图1所示:作线段AC的中垂线BD即可;
(2)不能,
理由:如图2,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,
∴AD=BD,
∵AC≠BC,
∴AD+AC≠BD+BC,
∴过点C不能画出一条“等分积周线”
(3)连接AE、DE,设BE=x,
∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,
∵∠B=∠C=90°,AB=3,BC=8,CD=5,
∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:
AB2+BE2=CE2+DC2,即32+x2=(8-x)2+52,
解得:x=5,所以BE=5,CE=3,
∴AB+BE=CE+DC,
S△ABE=S△DCE,
∴S四边形ABEF=S△ABE+S△AEF,
S四边形DCEF=S△DEF+S△DCE,
∴S四边形ABEF=S四边形DCEF,
AF+AB+BE=DF+EC+DC,
∴直线EF为四边形ABCD的“等分积周线”;
(4)如图4,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,
作直线EF,则EF是△ABC的等分积周线,
理由:由作图可得:AF=AC-FC=8-6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,
∵AB=BC,
∴∠A=∠C,
在△ABF和△CFG中
∴△ABF≌△CFG(SAS),
∴S△ABF=S△CFG,
又易得BE=EG=2,
∴S△BFE=S△EFG,
∴S△EFC=S四边形ABEF,
AF+AB+BE=CE+CF=10,
∴EF是△ABC的等分积周线,
若如图5,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),
另外本问的说理也可以通过作高,进行相关计算说明).

(2)不能,
理由:如图2,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,
∴AD=BD,
∵AC≠BC,
∴AD+AC≠BD+BC,
∴过点C不能画出一条“等分积周线”
(3)连接AE、DE,设BE=x,
∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,
∵∠B=∠C=90°,AB=3,BC=8,CD=5,
∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:

AB2+BE2=CE2+DC2,即32+x2=(8-x)2+52,
解得:x=5,所以BE=5,CE=3,
∴AB+BE=CE+DC,
S△ABE=S△DCE,
∴S四边形ABEF=S△ABE+S△AEF,
S四边形DCEF=S△DEF+S△DCE,
∴S四边形ABEF=S四边形DCEF,
AF+AB+BE=DF+EC+DC,
∴直线EF为四边形ABCD的“等分积周线”;
(4)如图4,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,
作直线EF,则EF是△ABC的等分积周线,
理由:由作图可得:AF=AC-FC=8-6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,
∵AB=BC,
∴∠A=∠C,

在△ABF和△CFG中
|
∴△ABF≌△CFG(SAS),
∴S△ABF=S△CFG,
又易得BE=EG=2,
∴S△BFE=S△EFG,
∴S△EFC=S四边形ABEF,
AF+AB+BE=CE+CF=10,
∴EF是△ABC的等分积周线,
若如图5,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),
另外本问的说理也可以通过作高,进行相关计算说明).
看了 (2014•东海县模拟)我们...的网友还看了以下:
提问还相对比较难的数学题!(请讲明白点,1.已知方程组X-Y=2;2X+Y=m的解满足X+Y大于4, 2020-03-31 …
如图1、图2为枝芽与一段枝条的结构图,请析图回答:(1)图2中的[g]是由图1中的[c]发育而来的 2020-05-04 …
a,b为正数,a≠b,x,y∈(0,+∞),求证a2/x+b2/y>=(a+b)2/x+y1.求证 2020-06-12 …
已知a,b为正数,a≠b,x,y∈(0,+∞),求证a2/x+b2/y>=(a+b)2/x+y已知 2020-06-12 …
1.x分之2=3-2根号2写出下列等式成立的条件2.根号(x-2)(x-3)=根号x-2×根号x- 2020-06-13 …
定义与命题丶数学1.请写出两个真命题并且前一个命题的条件是后一个命题的结论前一个命题的结论是后一个 2020-06-19 …
设x属于R,集合A中含有三个元素:3,X,X²-2X1.求元素X应该满足的条件.2.若-2属于A, 2020-06-23 …
如图1所示,两个相同的均匀金属圆环垂直相交连接,AB、CD为圆环的两条互相垂直的直径.把A、B两点 2020-07-08 …
高数各种条件1.可导的条件2.可微3.连续4.可积5.极限存在.麻烦归纳一下以上成立的条件. 2020-07-30 …
设函数f(x)=x^2+ax+bcosx(a,b∈R),集合A={x∣f(x)=0,x∈R},B={ 2020-11-01 …