早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3,设AD=x,CM=y,求y与x的函数解析式,并写出函数

题目详情
如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.

(1)求证:CM=EM;
(2)如果BC=
3
,设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;
(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.
▼优质解答
答案和解析
(1)证明:∵在Rt△ABC中,∠ACB=90°,M是BD的中点,
∴CM=
1
2
BD.
同理ME=
1
2
BD,
∴CM=ME.
(2)∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=
3

∴AB=2BC=2
3

由勾股定理得AC=3,
∵AD=x,∴CD=3-x,
在Rt△BCD中,∠BCD=90°,
∴BD2=BC2+CD2
∴BD=
3+(3−x)2

∵CM=
1
2
BD,CM=y,
∴y=
x2−6x+12
2
(0<x<3),
(3)不变.
∵M是Rt△BCD斜边BD的中点,∴MB=MC,∴∠MBC=∠MCB.
∴∠CMD=∠MBC+∠MCB=2∠MBC,
∵M是Rt△BED斜边BD的中点,
同理可得:∠EMD=2∠MBE,
∠CMD+∠EMD=2∠MBC+2∠MBE=2(∠MBC+∠MBE)=2∠ABC,
即∠CME=2∠ABC=120°,
∵MC=ME,
∴∠MCE=∠MEC=30°.