早教吧作业答案频道 -->数学-->
在ABC中,三内角A,B,C所对的边分别是a,b,c,且2bcos=2a-c求B的大小
题目详情
在ABC中,三内角A,B,C所对的边分别是a,b,c,且2bcos=2a-c
求B的大小
求B的大小
▼优质解答
答案和解析
因:a=2bsinA
b/sinB=a/sinA=2b
sinB=1/2
B=30度,或150度
所以:cos((B/2)-45度)=cos(-30度)=(根号3)/2
或,cos((B/2)-45度)=cos(30度)=(根号3)/2
cosA+sinC=sin(90度-A)+sinC=2sin(45度-((A-C)/2))*cos(45度-((A+C)/2))
=2sin(45度-((A-C)/2))*cos((B/2)-45度)
=(根号3)*sin(45度-((A-C)/2))
当(A-C)/2=-45度, C-A=90度,cosA+sinC为最大值:根号3
A-C=(A+C)-2C=180度-B-2C(根号3)*sin(-30度)
cosA+sinC>-(根号3)/2
综合以上,得: -(根号3)/2
b/sinB=a/sinA=2b
sinB=1/2
B=30度,或150度
所以:cos((B/2)-45度)=cos(-30度)=(根号3)/2
或,cos((B/2)-45度)=cos(30度)=(根号3)/2
cosA+sinC=sin(90度-A)+sinC=2sin(45度-((A-C)/2))*cos(45度-((A+C)/2))
=2sin(45度-((A-C)/2))*cos((B/2)-45度)
=(根号3)*sin(45度-((A-C)/2))
当(A-C)/2=-45度, C-A=90度,cosA+sinC为最大值:根号3
A-C=(A+C)-2C=180度-B-2C(根号3)*sin(-30度)
cosA+sinC>-(根号3)/2
综合以上,得: -(根号3)/2
看了 在ABC中,三内角A,B,C...的网友还看了以下:
1、6(a-b)^5/[1/3(a-b)^2]=.2、计算:2000*2^2000/(1999*2^ 2020-03-30 …
平面向量a,b,e,满足|e|=1,ae=1,be=2,|a-b|=2则ab的最小值|a-b|=2 2020-04-05 …
(1)已知abc属于正实数,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27ab 2020-04-27 …
y=a(x^2+b/a·x+c/a)如何变成a[x^2+2·b/2a·x+(b/2a)^2-(b/ 2020-05-13 …
1.计算(7x^2-2x)-(4-6x+2x)(a-b)^2*(b-a)2.先化简再求值:4(a^ 2020-05-13 …
定义集合A*B={x|x∈A且x不属于B},若A={1,3,5,7},B={2,3,5},则: ( 2020-05-15 …
(2X+Y)^2-7(2X+Y)-18(X^2-5X)^2-2(X^2-5X)-24还有(X^2- 2020-06-02 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
设记号*表示两个实数a和b的算术平均数的运算,即a*b=2分之a+b则下列等式中成立的式子有,急. 2020-06-13 …
f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2]的奇偶性已知函数f(x)对于任意实 2020-08-01 …