早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,请直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150

题目详情
在△ABC中,BD平分∠ABC(∠ABC<60°)
(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,请直接写出AB,DC和BC之间的数量关系.
(2)如图2,当点D在△ABC内部,且∠ACD=30°时,
①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.
②若∠ABC=2α,∠ACB=60°-α,请直接写出∠ADB的度数(用含α的式子表示).
作业搜
▼优质解答
答案和解析
作业搜(1)BC=AB+DC,理由如下:
在BC上截取BE=BA,连接DE,如图1所示:
∵∠ABC=42°,∠ACB=32°,
∴∠A=180°-∠ABC-∠ACB=106°,
∵BD平分∠ABC,
∴∠1=∠2=
1
2
∠ABC=21°,
在△BDE和△BDA中,
BE=BA 
∠2=∠1 
BD=BD 

∴△BDE≌△BDA(SAS),
∴∠BED=∠A=106°,
∴∠CED=180°-106°=74°,
∵∠BED=∠C+∠CDE,
∴∠CDE=∠BED-∠C=74°=∠CED,作业搜
∴CE=CD,
∴BC=BE+CE=AB+CD;
(2)①BC=AB+AD,思路如下:
延长BA到点E,使BE=BC,连接ED,EC,如图2所示:
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵BD=BD,
∴△BED≌△BCD(SAS),
∴DE=DC,∠BDE=∠BDC=150°
∴∠EDC=360°-150°-150°=60°,
∴△CDE为等边三角形,
∵∠ACD=30°,
∴∠ACE=∠ACD=30°
∴AC垂直平分DE.
∴AD=AE,作业搜
∴BC=BE=AB+AE=AB+AD;
②∠ADB=120°+α.理由如下:
同①,延长BA到点E,使BE=BC,连接ED,EC,如图3所示:
∵∠ACD=30°,∠ACB=60°-α,
∴∠BCD=30°-α,
∵BD平分∠ABC,
∴∠ABD=∠CBD=α,
∴∠BDC=180°-∠CBD-∠BCD=180°-α-(30°-α)=150°,
∵BD=BD,
∴△BED≌△BCD(SAS),
∴DE=DC,∠BDE=∠BDC=150°,∠BED=∠BCD=30°-α,
∴∠EDC=360°-150°-150°=60°,
∴△CDE为等边三角形,
∵∠ACD=30°,
∴∠ACE=∠ACD=30°,
∴AC垂直平分DE.
∴AD=AE,
∴∠ADE=∠BED=30°-α,
∴∠ADB=150°-(30°-α)=120°+α.