早教吧作业答案频道 -->其他-->
已知:如图1,∠1+∠2=180°,∠AEF=∠HLN;(1)判断图中平行的直线,并给予证明;(2)如图2,∠PMQ=2∠QMB,∠PNQ=2∠QND,请判断∠P与∠Q的数量关系,并证明.
题目详情
已知:如图1,∠1+∠2=180°,∠AEF=∠HLN;
(1)判断图中平行的直线,并给予证明;
(2)如图2,∠PMQ=2∠QMB,∠PNQ=2∠QND,请判断∠P与∠Q的数量关系,并证明.

(1)判断图中平行的直线,并给予证明;
(2)如图2,∠PMQ=2∠QMB,∠PNQ=2∠QND,请判断∠P与∠Q的数量关系,并证明.

▼优质解答
答案和解析
(1)AB∥CD,EF∥HL,
证明如下:∵∠1=∠AMN,
∴∠1+∠2=180°,
∴∠AMN+∠2=180°,
∴AB∥CD;
延长EF交CD于F1,
∵AB∥CD,∠AEF=∠HLN,
∴∠AEF=∠EF1L,
∴EF∥HL;

(2)∠P=3∠Q,
证明如下:∵AB∥CD,作QR∥AB,
∴∠RQM=∠QMB,RQ∥CD,
∴∠RQN=∠QND,
∴∠MQN=∠QMB+∠QND,
同理∠MRN=∠PMB+∠PND,
∵∠PMQ=2∠QMB,∠PNQ=2∠QND,
∴∠PMB=3∠QMB,∠PND=3∠QND,
∴∠MRN=3∠MQN,
即∠P=3∠Q;
证明如下:∵∠1=∠AMN,
∴∠1+∠2=180°,
∴∠AMN+∠2=180°,
∴AB∥CD;
延长EF交CD于F1,
∵AB∥CD,∠AEF=∠HLN,
∴∠AEF=∠EF1L,
∴EF∥HL;

(2)∠P=3∠Q,
证明如下:∵AB∥CD,作QR∥AB,
∴∠RQM=∠QMB,RQ∥CD,
∴∠RQN=∠QND,
∴∠MQN=∠QMB+∠QND,
同理∠MRN=∠PMB+∠PND,
∵∠PMQ=2∠QMB,∠PNQ=2∠QND,
∴∠PMB=3∠QMB,∠PND=3∠QND,
∴∠MRN=3∠MQN,
即∠P=3∠Q;
看了 已知:如图1,∠1+∠2=1...的网友还看了以下:
设服从二项分布B~(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p 2020-05-15 …
设服从二项分布B~(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p 2020-05-15 …
设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.68,则二项分布的参数n、p的 2020-05-15 …
设服从二项分布B~(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p 2020-06-10 …
虚空藏菩萨咒下面拼音帮我翻出来虚空藏咒注音:ānǐ,luóshépí.qiánfúsuōshépí 2020-07-03 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
如图,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点, 2020-07-22 …
P(n)推导已知p(1)=1;p(n)=(1-1/(n^2))p(n-1)+2/n-1/(n^2) 2020-08-01 …
几何分布无记忆性证明中证:P{x=m+n|x>m}=P(X=m+n,x>m)/P{x>m}=P(X= 2020-10-31 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …