早教吧作业答案频道 -->数学-->
初二的代数难题已知:p+q+r=9,且p/x方-yz=q/y方-zx=r/z方-xy求PX+QY+RZ/X+Y+Z(1/5就是5分之1的意思A方就是A的平方)(2)m取何整数值时,方程组{2x+my=4,x+4y=1}的解x和y都是整数(3)已知xyzt=1求(1/1+x+xy+xyz)+(1/1+y
题目详情
初二的代数难题
已知:p+q+r=9,且p/x方-yz=q/y方-zx=r/z方-xy 求PX+QY+RZ/X+Y+Z
(1/5就是5分之1的意思 A方就是A的平方)
(2)m取何整数值时,方程组{2x+my=4,x+4y=1}的解x和y都是整数
(3)已知xyzt=1求 (1/1+x+xy+xyz) + (1/1+y+yz+yzt) + (1/1+z+zt+ztx) + (1/1+t1tx1txy)
已知:p+q+r=9,且p/x方-yz=q/y方-zx=r/z方-xy 求PX+QY+RZ/X+Y+Z
(1/5就是5分之1的意思 A方就是A的平方)
(2)m取何整数值时,方程组{2x+my=4,x+4y=1}的解x和y都是整数
(3)已知xyzt=1求 (1/1+x+xy+xyz) + (1/1+y+yz+yzt) + (1/1+z+zt+ztx) + (1/1+t1tx1txy)
▼优质解答
答案和解析
(1)设p/(x^2-yz)=q/(y^2-zx)=r/(z^2-xy)=k,
所以p=k(x^2-yz),q=k(y^2-zx),r=k(z^2-xy),
因为p+q+r=9,所以k(x^2+y^2+z^2-xy-yz-zx)=9,
而(px+qy+rz)/(x+y+z)
=[kx(x^2-yz)+ky(y^2-zx)+kz(z^2-xy)]/(x+y+z)
=k(x^3+y^3+z^3-3xyz)/(x+y+z),
注意到(x^3+y^3+z^3-3xyz)/(x+y+z)=x^2+y^2+z^2-xy-yz-zx,
所以(px+qy+rz)/(x+y+z)=k(x^2+y^2+z^2-xy-yz-zx)=9,
所以(px+qy+rz)/(x+y+z)=9;
(2)因为x+4y=1,
所以x=1-4y,
代入第一个式子,得2(1-4y)+my=4,
所以(m-8)y=2,
因为2=1*2=(-1)*(-2),
所以m-8=1,y=2,
或m-8=2,y=1,
或m-8=-1,y=-2,
或m-8=-2,y=-1,
所以m=9或m=10或m=7或m=6,
所以当m取6,7,9,10时,x和y都是整数;
(3)因为1/(1+y+yz+yzt)
=1/(xyzt+y+yz+yzt)
=1/[y(1+z+zt+ztx)]
=1/[y(xyzt+z+zt+ztx)]
=1/[yz(1+t+tx+txy)]
=1/[yz(xyzt+t+tx+txy)]
=1/[yzt(1+x+xy+xyz)],
同理,1/(1+z+zt+ztx)=1/[zt(1+x+xy+xyz)],
1/(1+t+tx+txy)=1/[t(1+x+xy+xyz),
所以1/(1+x+xy+xyz)+1/(1+y+yz+yzt)+1/(1+z+zt+ztx)+1/(1+t+tx+txy)
=yzt/[yzt(1+x+xy+xyz)]+1/[yzt(1+x+xy+xyz)]+y/[yzt(1+x+xy+xyz)+
yz/[yzt(1+x+xy+xyz)]
=(1+y+yz+yzt)/[yzt(1+x+xy+xyz)]
=(1+y+yz+yzt)/(yzt+xyzt+xyzt*y+xyzt*yz)
=(1+y+yz+yzt)/(yzt+1+y+yz)
=(1+y+yz+yzt)/(1+y+yz+yzt)
=1.
所以1/(1+x+xy+xyz)+1/(1+y+yz+yzt)+1/(1+z+zt+ztx)+1/(1+t+tx+txy)=1.
所以p=k(x^2-yz),q=k(y^2-zx),r=k(z^2-xy),
因为p+q+r=9,所以k(x^2+y^2+z^2-xy-yz-zx)=9,
而(px+qy+rz)/(x+y+z)
=[kx(x^2-yz)+ky(y^2-zx)+kz(z^2-xy)]/(x+y+z)
=k(x^3+y^3+z^3-3xyz)/(x+y+z),
注意到(x^3+y^3+z^3-3xyz)/(x+y+z)=x^2+y^2+z^2-xy-yz-zx,
所以(px+qy+rz)/(x+y+z)=k(x^2+y^2+z^2-xy-yz-zx)=9,
所以(px+qy+rz)/(x+y+z)=9;
(2)因为x+4y=1,
所以x=1-4y,
代入第一个式子,得2(1-4y)+my=4,
所以(m-8)y=2,
因为2=1*2=(-1)*(-2),
所以m-8=1,y=2,
或m-8=2,y=1,
或m-8=-1,y=-2,
或m-8=-2,y=-1,
所以m=9或m=10或m=7或m=6,
所以当m取6,7,9,10时,x和y都是整数;
(3)因为1/(1+y+yz+yzt)
=1/(xyzt+y+yz+yzt)
=1/[y(1+z+zt+ztx)]
=1/[y(xyzt+z+zt+ztx)]
=1/[yz(1+t+tx+txy)]
=1/[yz(xyzt+t+tx+txy)]
=1/[yzt(1+x+xy+xyz)],
同理,1/(1+z+zt+ztx)=1/[zt(1+x+xy+xyz)],
1/(1+t+tx+txy)=1/[t(1+x+xy+xyz),
所以1/(1+x+xy+xyz)+1/(1+y+yz+yzt)+1/(1+z+zt+ztx)+1/(1+t+tx+txy)
=yzt/[yzt(1+x+xy+xyz)]+1/[yzt(1+x+xy+xyz)]+y/[yzt(1+x+xy+xyz)+
yz/[yzt(1+x+xy+xyz)]
=(1+y+yz+yzt)/[yzt(1+x+xy+xyz)]
=(1+y+yz+yzt)/(yzt+xyzt+xyzt*y+xyzt*yz)
=(1+y+yz+yzt)/(yzt+1+y+yz)
=(1+y+yz+yzt)/(1+y+yz+yzt)
=1.
所以1/(1+x+xy+xyz)+1/(1+y+yz+yzt)+1/(1+z+zt+ztx)+1/(1+t+tx+txy)=1.
看了 初二的代数难题已知:p+q+...的网友还看了以下:
试说明不论X为何值时,多项式2X的四次方-4X的平方-1的值总大于X的平方-2X的平方-4的值 2020-05-16 …
当x=?时,分式x+2分之x平方-4的值为0 2020-06-02 …
a为正数若a的2n次方=5则2a的6n次方-4的值是A26B246c242D都不衬 2020-06-22 …
诺分式(X+1)(X-2)分之x的平方-4的值为0求x的值 2020-07-03 …
y=x的平方+5/根号下x的平方+4的值域 2020-07-30 …
下面几个数学题是初二的问题,大家不要做得太复杂,要不然我看不懂的``要按照初二的形式做啊`不过要写 2020-08-02 …
若0小于x小于1,则{根号(x-x分之1)的平方+4}-{根号(x+x分之1)的平方-4}的值为 2020-08-02 …
X-Y=0,Z-Y=0,求X的平方+Y的平方+Z的平方-XY-YZ-ZX的最小值A的平方+B的平方+ 2020-11-01 …
已知(a+1)^2+(b-3)^2=0,求ab已知│x+2│+(y-1)^2+(z-1)^4=0,求 2020-11-01 …
1):已知2x-5y-3=0,求4的x次方除于32的y次方的值2):已知(a+b)的平方=7,(a+ 2020-12-19 …