早教吧作业答案频道 -->其他-->
设f(x,y)在点(0,0)处连续,且lim(x,y)→(0,0)f(x,y)−1ex2+y2−1=2,求∂f(0,0)∂x和∂f(0,0)∂y,并讨论f(x,y)在(0,0)处是否可微,若可微求出df(x,y)|(0,0).
题目详情
设f(x,y)在点(0,0)处连续,且
=2,求
和
,并讨论f(x,y)在(0,0)处是否可微,若可微求出df(x,y)|(0,0).
| lim |
| (x,y)→(0,0) |
| f(x,y)−1 |
| ex2+y2−1 |
| ∂f(0,0) |
| ∂x |
| ∂f(0,0) |
| ∂y |
▼优质解答
答案和解析
解;∵x→0时,ex~x
∴(x,y)→(0,0)时,ex2+y2~x2+y2
∴
=
=2
又f(x,y)在点(0,0)处连续,因此由上面的极限,知f(0,0)=1
∴
=
=
=
•x=0
=
=
=
•y=0
∴f(x,y)−f(0,0)−[
•x+
•y]=f(x,y)-1
而
=
•
=2•0=0
∴由全微分的定义知,f(x,y)在(0,0)处可微
且df(x,y)|(0,0)=
•x+
•y=0
∴(x,y)→(0,0)时,ex2+y2~x2+y2
∴
| lim |
| (x,y)→(0,0) |
| f(x,y)−1 |
| ex2+y2−1 |
| lim |
| (x,y)→(0,0) |
| f(x,y)−1 |
| x2+y2 |
又f(x,y)在点(0,0)处连续,因此由上面的极限,知f(0,0)=1
∴
| ∂f(0,0) |
| ∂x |
| lim |
| x→0 |
| f(x,0)−f(0,0) |
| x−0 |
| lim |
| x→0 |
| f(x,0)−1 |
| x |
| lim |
| x→0 |
| f(x,0)−f(0,0) |
| x2 |
| ∂f(0,0) |
| ∂y |
| lim |
| y→0 |
| f(0,y)−f(0,0) |
| y−0 |
| lim |
| y→0 |
| f(0,y)−1 |
| y |
| lim |
| y→0 |
| f(0,y)−f(0,0) |
| y2 |
∴f(x,y)−f(0,0)−[
| ∂f(0,0) |
| ∂x |
| ∂f(0,0) |
| ∂y |
而
| lim |
| (x,y)→(0,0) |
| f(x,y)−1 | ||
|
| lim |
| (x,y)→(0,0) |
| f(x,y)−1 |
| x2+y2 |
| x2+y2 |
∴由全微分的定义知,f(x,y)在(0,0)处可微
且df(x,y)|(0,0)=
| ∂f(0,0) |
| ∂x |
| ∂f(0,0) |
| ∂y |
看了 设f(x,y)在点(0,0)...的网友还看了以下:
解方程:1、x除三分之二=2.5 2、5x减1.5x乘8=0 3、5x减x=0.36 4、八分之( 2020-05-16 …
设f(x)=x^n•sin(1/x)(x≠0),且f(0)=0,则f(x)在x=0处()设f(x) 2020-05-20 …
设X≥1,比较因为比较x3与x2-x+1的大小解x-(x-x+1)=x-x+x-1=x(x-1)+ 2020-06-18 …
设函数f(x)={1,x>0,g(x)=x^2f(x-1),则函数g(x)的递减区间?答案是[0, 2020-07-04 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
两道高数题1.已知f(x)=1+x的m次方*(1-x)的n次方,其中m,n为正整数,不经计算f'( 2020-07-20 …
求2xsin(1/x)-cos(1/x)在x→0+时的极限.这个问题是这么来的,考虑f(x)=(x 2020-07-21 …
分段函数求导?设f(x)={[(1+x)^(1/x0]-e,x不等于00,x=0求f(x)在x=0 2020-07-22 …
[ln(x+e^x)]/x=lim(x->0)(1+e^x)/(x+e^x)怎么得到的?原题limx 2020-11-01 …
f(x)=x^2,求f/(1)(注:f(1+△x)-f(1)是分子△x是分母打不出下划线)f/(1) 2020-11-01 …