早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x,y)在点(0,0)处连续,且lim(x,y)→(0,0)f(x,y)−1ex2+y2−1=2,求∂f(0,0)∂x和∂f(0,0)∂y,并讨论f(x,y)在(0,0)处是否可微,若可微求出df(x,y)|(0,0).

题目详情
设f(x,y)在点(0,0)处连续,且
lim
(x,y)→(0,0)
f(x,y)−1
ex2+y2−1
=2,求
∂f(0,0)
∂x
∂f(0,0)
∂y
,并讨论f(x,y)在(0,0)处是否可微,若可微求出df(x,y)|(0,0)
▼优质解答
答案和解析
解;∵x→0时,ex~x
∴(x,y)→(0,0)时,ex2+y2~x2+y2
lim
(x,y)→(0,0)
f(x,y)−1
ex2+y2−1
=
lim
(x,y)→(0,0)
f(x,y)−1
x2+y2
=2
又f(x,y)在点(0,0)处连续,因此由上面的极限,知f(0,0)=1
∂f(0,0)
∂x
=
lim
x→0
f(x,0)−f(0,0)
x−0
lim
x→0
f(x,0)−1
x
=
lim
x→0
f(x,0)−f(0,0)
x2
•x=0
∂f(0,0)
∂y
=
lim
y→0
f(0,y)−f(0,0)
y−0
lim
y→0
f(0,y)−1
y
=
lim
y→0
f(0,y)−f(0,0)
y2
•y=0
f(x,y)−f(0,0)−[
∂f(0,0)
∂x
•x+
∂f(0,0)
∂y
•y]=f(x,y)-1
lim
(x,y)→(0,0)
f(x,y)−1
x2+y2
=
lim
(x,y)→(0,0)
f(x,y)−1
x2+y2
x2+y2
=2•0=0
∴由全微分的定义知,f(x,y)在(0,0)处可微
且df(x,y)|(0,0)=
∂f(0,0)
∂x
•x+
∂f(0,0)
∂y
•y=0