早教吧作业答案频道 -->数学-->
四边形ABCD是正方形,P为BC上任一点,角PAD的平分线交CD于Q.求证:DQ等于AP减BP
题目详情
四边形ABCD是正方形,P为BC上任一点,角PAD的平分线交CD于Q.求证:DQ等于AP减BP
▼优质解答
答案和解析
⑴ 坐标法证明
如图,取坐标系A﹙00﹚,B﹙10﹚ D﹙01﹚ 设Q﹙a,1﹚,则tanα=a,
tan∠PAD=tan2α=﹙2a﹚/﹙1-a²﹚ tan∠PAB=cot2α=﹙1-a²﹚/﹙2a﹚
P﹙1,﹙1-a²﹚/﹙2a﹚﹚
DQ+BP=a+﹙1-a²﹚/﹙2a﹚=﹙1+a²﹚/﹙2a﹚
AP=√[1²+﹙﹙1-a²﹚/﹙2a﹚﹚²]=﹙1+a²﹚/﹙2a﹚=DQ+BP
⑵ 几何证明
⊿ABP绕A逆时针旋转90º,到达⊿ADG,
∠GAQ=∠GAD+∠DAQ=∠PAB+∠QAP=∠QAB=∠GQA
∴AP=AG=GQ=GD+DQ=BP+DQ.
如图,取坐标系A﹙00﹚,B﹙10﹚ D﹙01﹚ 设Q﹙a,1﹚,则tanα=a,
tan∠PAD=tan2α=﹙2a﹚/﹙1-a²﹚ tan∠PAB=cot2α=﹙1-a²﹚/﹙2a﹚
P﹙1,﹙1-a²﹚/﹙2a﹚﹚
DQ+BP=a+﹙1-a²﹚/﹙2a﹚=﹙1+a²﹚/﹙2a﹚
AP=√[1²+﹙﹙1-a²﹚/﹙2a﹚﹚²]=﹙1+a²﹚/﹙2a﹚=DQ+BP
⑵ 几何证明
⊿ABP绕A逆时针旋转90º,到达⊿ADG,
∠GAQ=∠GAD+∠DAQ=∠PAB+∠QAP=∠QAB=∠GQA
∴AP=AG=GQ=GD+DQ=BP+DQ.

看了 四边形ABCD是正方形,P为...的网友还看了以下:
直线y=-x+2与y轴交与点a,与y轴交与点b,p是直线ab上的一个动点,如果三角形poa是等腰三 2020-05-13 …
在平面直角坐标系中 已知a (3,0 ),B(0,4),O为坐标原点,以点P为圆心的圆P半径为1, 2020-05-16 …
已知如图,直线y=根号3\3X+2与坐标轴相交于AB两点,若点P是直线AB上的一动点,试在坐标平面 2020-06-14 …
直线y=-x+2于X轴交于点A,与y轴交于点B,P是直线AB上的一个动点,如果三角形POA是等腰三 2020-06-29 …
已知以点p(7,0)为圆心,25为半径的圆p,交x轴负半轴于点a,交y轴正半轴于点b已知以点p(7 2020-07-29 …
关于交集A={p|p是平行四边形}B={p|p是梯形}C={p|p是对角线相等的四边形}则,B∩C 2020-07-30 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,过原点O 2020-08-01 …
三角形ABC中,角A,角B,角C的对边分别为a,b,c,抛物线y=x^2-2ax+b^2交x轴于两点 2020-11-12 …
已知abc两两相互独立,求证P(a交b交c)=p(a)p(b)p(c)已知ab相互独立,求证a已知a 2020-12-01 …
1.如图,已知直线y=1/2x与双曲线y=k/x(k>0)交与A、B两点,且点A的横坐标为4,过原点 2021-01-10 …