早教吧 育儿知识 作业答案 考试题库 百科 知识分享

X1>X2>X3>X4>=2且X2+X3+X4>=X1证明:(X1+X2+X3)^2=不好意思,以下是正确的:已知x1>x2>x3>x4≥2且x2+x3+x4≥x1证明:(x1+x2+x3+x4)^2≤4x1x2x3x4x都是未知数x,不是乘号;^2是表示平方

题目详情
X1>X2>X3>X4>=2
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
▼优质解答
答案和解析
分析:这是一个很典型的不等式问题,下面介绍两种思路自然、简洁明了的证法.两种证法都源于对变元地位的分析.由于已知条件实质是两个约束条件,因此自由变元为两个,于是左右两边可看作是自由变元的函数,实现问题的转换.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.