早教吧作业答案频道 -->数学-->
X1>X2>X3>X4>=2且X2+X3+X4>=X1证明:(X1+X2+X3)^2=不好意思,以下是正确的:已知x1>x2>x3>x4≥2且x2+x3+x4≥x1证明:(x1+x2+x3+x4)^2≤4x1x2x3x4x都是未知数x,不是乘号;^2是表示平方
题目详情
X1>X2>X3>X4>=2
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
▼优质解答
答案和解析
分析:这是一个很典型的不等式问题,下面介绍两种思路自然、简洁明了的证法.两种证法都源于对变元地位的分析.由于已知条件实质是两个约束条件,因此自由变元为两个,于是左右两边可看作是自由变元的函数,实现问题的转换.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.
看了 X1>X2>X3>X4>=2...的网友还看了以下:
我们把离心率为e=(√5+1)/2的双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)成为我 2020-03-30 …
若(x+2)3-4x(x+2)=k(x+2),则k的表达式为()A.x3-4x2-8x+8B.x3 2020-04-26 …
已知函数f(x)=x2-2ln|x|与g(x)=sin(x+ψ)(ω>0)有两个公共点,则在下列函 2020-05-16 …
1)x^2-9x+8=0x1=8x2=1(2)x^2+6x-27=0x1=3x2=-9(3)x^2 2020-06-06 …
试用迭代法给出方程x3-x-2=0,在2附近的五次迭代近似解,即由x.o=2算出x.5,精确到小数 2020-06-22 …
1)负数zz*2+z+1=0求z*3-z-1/z+1/z*3=2)p(x)被x*2+1除后余式为2 2020-07-30 …
若分式方程3/x-2=a/x=4/x(x-2)有增根,则增根可能为?我知道答案是3/(x-2)=a 2020-07-30 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
1.过圆x^2+y^2=1外一点A(2,0)做圆的割线,求割线被圆截得的弦的中点的轨迹方程.2.求L 2020-12-05 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …