早教吧作业答案频道 -->数学-->
X1>X2>X3>X4>=2且X2+X3+X4>=X1证明:(X1+X2+X3)^2=不好意思,以下是正确的:已知x1>x2>x3>x4≥2且x2+x3+x4≥x1证明:(x1+x2+x3+x4)^2≤4x1x2x3x4x都是未知数x,不是乘号;^2是表示平方
题目详情
X1>X2>X3>X4>=2
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
▼优质解答
答案和解析
分析:这是一个很典型的不等式问题,下面介绍两种思路自然、简洁明了的证法.两种证法都源于对变元地位的分析.由于已知条件实质是两个约束条件,因此自由变元为两个,于是左右两边可看作是自由变元的函数,实现问题的转换.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.
看了 X1>X2>X3>X4>=2...的网友还看了以下:
等差数列{an}的前n项和为Sn,若m>1,且a(m-1)+a(m+1)-a^2(m)=0.[注( 2020-05-13 …
英语翻译我查了百科词典的意思是下面这样:1.不在,缺席[U][C][(+from)]Sheneve 2020-05-17 …
数列{an}单调递增,满足a1=1,(an+1)四次方+(an)四次方+1=2[(an+1)²(a 2020-05-21 …
打架后的反思,注意不是我打的,是我们班上的同学,我连过程都没有看见!老师让全班都写反思.是下午放学 2020-05-22 …
a1=2aAn=2a-a^2/A(n-1)求通项公式(n-1)是下标!谢谢你们的回答但是我想要正规 2020-06-03 …
双重否定的歧义清华大学没有不叫王明的人.这句话的意思是下面哪个理解?1.清华大学至少有一个人叫王明 2020-07-03 …
||11是下标比如|w|1w是一个列向量,1是下标原文是:|.|1denotestheL1norm 2020-07-29 …
MATLAB编程问题1.考虑一下迭代公式xn+1=a/b+xn,其中a,b为正的常数(n+1,n是 2020-07-29 …
已知数列{An}中,A1=1,A(n+1)=An/An+1,求An『那个(n+1)是A的下标,An 2020-07-29 …
韦达定理的推广式是不是这样?ax^n+b1x^(n-1)+b2x^(n-2)+...+an=0[其 2020-08-02 …