早教吧作业答案频道 -->数学-->
X1>X2>X3>X4>=2且X2+X3+X4>=X1证明:(X1+X2+X3)^2=不好意思,以下是正确的:已知x1>x2>x3>x4≥2且x2+x3+x4≥x1证明:(x1+x2+x3+x4)^2≤4x1x2x3x4x都是未知数x,不是乘号;^2是表示平方
题目详情
X1>X2>X3>X4>=2
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
且X2+X3+X4>=X1
证明:(X1+X2+X3)^2=
不好意思,以下是正确的:
已知x1>x2>x3>x4≥2
且x2+x3+x4≥x1
证明:(x1+x2+x3+x4)^2≤4x1x2x3x4
【x都是未知数x,不是乘号;^2是表示平方】
▼优质解答
答案和解析
分析:这是一个很典型的不等式问题,下面介绍两种思路自然、简洁明了的证法.两种证法都源于对变元地位的分析.由于已知条件实质是两个约束条件,因此自由变元为两个,于是左右两边可看作是自由变元的函数,实现问题的转换.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.
把左右两边均看作x3、x4的函数,因此左边关于x3、x4的最大值为(x1+3x2)2,右边关于x3、x4的最小值为16x1x2,因此问题转化为证明不等式(x1+3x2)2≤16x1x2.
而上式的证明是十分容易的.事实上
16x1x2-(x1+3x2)2==(9x2-x1)( x1-x2)
≥(9x2-x2-x3-x4)( x1-x2)≥0.
令x1=k(x2+x3+x4),则
这时原不等式变形为
上式左边是关于x3、x4的方程,其最大值为右边关于x3、x4的方程,其最小值为4x2,因此要证上式成立,只需证明
这里只要注意到上是减函数立得
得证.
因此,(x1+x2+x3+x4)2≤4 x1x2x3x4.
看了 X1>X2>X3>X4>=2...的网友还看了以下:
复合函数的同增异减问题f(x)=x^4-x^2-1的单调区间是:递增:x^2>1/2;递减:x^20 2020-03-30 …
已知函数f(x)=|log2x|,0<x<2sin(π4x),2≤x≤10,若存在实数x1,x2, 2020-05-17 …
f(x)=x^2+|x-a|+1,x属于R,常数a为R,求f(x)最小值问过一次,还有疑问,上次答 2020-05-23 …
用代数式解答根据例式例:已知:x*2+x-1=0求x*3+2x*2+3x*3+2x*2+3=x*3 2020-05-23 …
matlab取模下解方程不知道Matlab在取模下如何进行矩阵运算?问题是这样的.我有一个方程组: 2020-07-07 …
解方程,4x+9-3=147x-20-4x=14.51.2+5x+2.4=100.9x-27+13 2020-07-18 …
用matlab解这样一个方程组怎么解不出来啊[x,y,z]=solve('x^2+y^2+z^2=r 2020-10-31 …
matlab求解带有未知系数的方程,就好比y=x1*x^3+x2*x+x3*x^2+x4,其中x1, 2020-11-04 …
知函数f(x)={1/|x-1|(x≠1),1(x=1)},若关于×的函数h(x)=f(x)^2+b 2020-11-20 …
矩阵求非齐次方程组2*X1+X2-X3+X4=14*X1+2*X2-2*X3+X4=22*X1+X2 2021-02-10 …