早教吧作业答案频道 -->数学-->
数列{an}单调递增,满足a1=1,(an+1)四次方+(an)四次方+1=2[(an+1)²(an)²+(an+1)²+(an)²](1)求数列{an}的通项公式(2)求数列{an/(2的n次方)}前n项的和(所有的n+1都是下角标)
题目详情
数列{an}单调递增,满足a1=1,(an+1)四次方+(an)四次方+1=2[(an+1)²(an)²+(an+1)²+(an)²]
(1)求数列{an}的通项公式
(2)求数列{an/(2的n次方)}前n项的和
(所有的n+1都是下角标)
(1)求数列{an}的通项公式
(2)求数列{an/(2的n次方)}前n项的和
(所有的n+1都是下角标)
▼优质解答
答案和解析
(1)原式整理,因解分解后,
[a(n+1)^2+a(n)^2]^2-2[a(n+1)^2+a(n)^2]+1=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2-4[a(n+1)(an)]^2=0
{a(n+1)^2+a(n)^2-1+2a(n+1)(an)}{a(n+1)^2+a(n)^2-1-2a(n+1)(an)}=0
a(n+1)^2+a(n)^2-1+2a(n+1)(an)=0 或 a(n+1)^2+a(n)^2-1-2a(n+1)(an)=0
[a(n+1)+a(n)]^2-1=0 或 [a(n+1)-a(n)]^2-1=0
由于是递增数列,所以
[a(n+1)+a(n)]^2>1,
所以[a(n+1)+a(n)]^2-1=0不成立,舍去,留下第二组.即
[a(n+1)-a(n)]^2-1=0
(a(n+1)-a(n)+1 )(a(n+1)-a(n)-1)=0
a(n+1)-a(n)+1=0或a(n+1)-a(n)-1=0
由于a(n+1)-a(n)>0,所以a(n+1)-a(n)+1=0不成立,舍去,留下:a(n+1)-a(n)-1=0
结论:经过层层选拔,精挑细选,化简为a(n+1)=a(n)+1,问题柳暗花明,原来是首项为1,公差为1的单调递增等差数列,简言之,就是正整数集合.
所以an=n,n为正整数.
(2)新数列bn=an/2^n=n/2^n是观察分母是等差数列,分子是等比数列,可以采用等比数列的求和公式法,即乘上公比后,错位相减法.
Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n
两边乘上公比1/2, Sn/2=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1)
错位相减后,Sn-Sn/2=(1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n)-n/2^(n+1)
Sn-Sn/2=(1-1/2^n)-n/2^(n+1)
Sn/2=1-1/2^n-n/2^(n+1)
Sn=2-1/2^(n-1)-n/2^n
完毕,坚持就是胜利,看似麻烦的题目,最后结果竟是如此简单,请批评指正.
[a(n+1)^2+a(n)^2]^2-2[a(n+1)^2+a(n)^2]+1=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2=4[a(n+1)(an)]^2
[a(n+1)^2+a(n)^2-1]^2-4[a(n+1)(an)]^2=0
{a(n+1)^2+a(n)^2-1+2a(n+1)(an)}{a(n+1)^2+a(n)^2-1-2a(n+1)(an)}=0
a(n+1)^2+a(n)^2-1+2a(n+1)(an)=0 或 a(n+1)^2+a(n)^2-1-2a(n+1)(an)=0
[a(n+1)+a(n)]^2-1=0 或 [a(n+1)-a(n)]^2-1=0
由于是递增数列,所以
[a(n+1)+a(n)]^2>1,
所以[a(n+1)+a(n)]^2-1=0不成立,舍去,留下第二组.即
[a(n+1)-a(n)]^2-1=0
(a(n+1)-a(n)+1 )(a(n+1)-a(n)-1)=0
a(n+1)-a(n)+1=0或a(n+1)-a(n)-1=0
由于a(n+1)-a(n)>0,所以a(n+1)-a(n)+1=0不成立,舍去,留下:a(n+1)-a(n)-1=0
结论:经过层层选拔,精挑细选,化简为a(n+1)=a(n)+1,问题柳暗花明,原来是首项为1,公差为1的单调递增等差数列,简言之,就是正整数集合.
所以an=n,n为正整数.
(2)新数列bn=an/2^n=n/2^n是观察分母是等差数列,分子是等比数列,可以采用等比数列的求和公式法,即乘上公比后,错位相减法.
Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n
两边乘上公比1/2, Sn/2=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1)
错位相减后,Sn-Sn/2=(1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n)-n/2^(n+1)
Sn-Sn/2=(1-1/2^n)-n/2^(n+1)
Sn/2=1-1/2^n-n/2^(n+1)
Sn=2-1/2^(n-1)-n/2^n
完毕,坚持就是胜利,看似麻烦的题目,最后结果竟是如此简单,请批评指正.
看了 数列{an}单调递增,满足a...的网友还看了以下:
1、在N角星中,∠A1+∠A2+∠A3+.+∠A(n-1)+∠An,之和是几?2、如果一个凸多边形 2020-05-23 …
在角abc中,三个内角角a角b角c满足角b减角a等于角c减角b,则角b等于—— 2020-06-18 …
如图 在三角形abc中 d e分别是ac ab边上的点,且满足角bdc=角c,角bde=角a求证: 2020-06-27 …
有几道高二数学题不懂快来帮看看!1.已知椭圆x^/100 + y^/64=1的焦点为F1,F2,椭 2020-06-27 …
下列各组词语中,字的读音全都正确的一组是A.巨擘(bò)殷红(yān)标识(shí)身陷囹圄(yǔ 2020-07-15 …
n°角的余角的补角是(),n的取值范围是 2020-07-30 …
图示为一个正n角星的一部分,该正n角星是一个边长都是2n的简单(不与自身相交)闭合正多边形,点A1 2020-08-02 …
已知点A、B分别是直线y=x和y=-x上在y轴同侧的动点,且△AOB的面积为9/8点P满足向量AP= 2020-11-01 …
6角星的六角之和是多少?7角星的七角之和是多少?8角星的八角之和是多少?.N角星的N角之和是多少?我 2020-11-03 …
按图示的方法搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒.设共搭成n角形,你怎样用关于n的 2020-11-11 …