早教吧作业答案频道 -->数学-->
在直线l的一侧画一个半圆T,C,D是T上的两点,T上过C和D的切线分别交l于B和A,半圆的圆心在线段BA上,E是线段AC和BD的交点,F是l上的点,EF垂直l.求证:EF平分∠CFD.
题目详情
在直线l的一侧画一个半圆T,C,D是T上的两点,T上过C和D的切线分别交l于B和A,半圆的圆心在线段BA上,E是线段AC和BD的交点,F是l上的点,EF垂直l.求证:EF平分∠CFD.
▼优质解答
答案和解析
证明:如图,设AD与BC相交于点P,用O表示半圆T的圆心,
过P作PH丄l于H,连OD,OC,OP.由题意知Rt△OAD∽Rt△PAH,
于是有
=
.
类似地,Rt△OCB∽Rt△PHB,
则有
=
.
由CO=DO,有
=
,从而
•
•
=1.
由塞瓦定理的逆定理知三条直线AC,BD,PH相交于一点,即E在PH上,点H与F重合.
因∠ODP=∠OCP=90°,所以O,D,C,P四点共圆,直径为OP.
又∠PFC=90°,从而推得点F也在这个圆上,
因此∠DFP=∠DOP=∠COP=∠CFP,
所以EF平分∠CFD.

过P作PH丄l于H,连OD,OC,OP.由题意知Rt△OAD∽Rt△PAH,
于是有
AH |
AD |
HP |
DO |
类似地,Rt△OCB∽Rt△PHB,
则有
BH |
BC |
HP |
CO |
由CO=DO,有
AH |
AD |
BH |
BC |
AH |
HB |
BC |
CP |
PD |
DA |
由塞瓦定理的逆定理知三条直线AC,BD,PH相交于一点,即E在PH上,点H与F重合.
因∠ODP=∠OCP=90°,所以O,D,C,P四点共圆,直径为OP.
又∠PFC=90°,从而推得点F也在这个圆上,
因此∠DFP=∠DOP=∠COP=∠CFP,
所以EF平分∠CFD.
看了 在直线l的一侧画一个半圆T,...的网友还看了以下:
椭圆X^2/a^2+y^2/b^2=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.设过点 2020-05-16 …
已知椭圆的中心在原点,离心率为1/2,一个焦点是F(0,1)1.求椭圆方程(Y型方程)2.直线l过 2020-05-16 …
已知椭圆的中心在坐标原点,离心率为1/2,一个焦点是F(0,1).1、求椭圆方程2、直线l过点F交 2020-05-16 …
已知二次函数f(x)=x^2-16x+q+3.1.若函数在区间[-1,1]上存在零点,求实数q的取 2020-06-12 …
证明:若T(≠0)是f(X)的周期,则-T也是f(X)的周期. 2020-06-14 …
设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+ 2020-07-21 …
若f(2x+T)=f(2x),则T/2是f(x)还是f(2x)的周期?若是f(x)的周期,则令f( 2020-07-30 …
对于积分上限函数∫(a,t)f(y)dy,知道被积函数是f(t).那么对于∫(a,t)f(x+y) 2020-08-02 …
周期函数基础问题填空.1题没看懂;2题不明白1.周期函数()有最小正周期,若T≠0是f(x)的周期, 2021-01-20 …
超难数学题21,f(x)导数在(x-无穷)的极限为e,求f(x+1)-f(x)在x-无穷,的极限.F 2021-02-16 …