早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等

题目详情
(2013•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
▼优质解答
答案和解析
(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,
∠ABE=∠DAF
AB=AD
∠BAE=∠D

∴△ABE≌△DAF(ASA),
∴AF=BE;

(2)MP与NQ相等.
理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,
∵AB∥CD,AD∥BC,
∴四边形AMPF与四边形BNQE是平行四边形,
∴AF=PM,BE=NQ,
∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,
∠ABE=∠DAF
AB=AD
∠BAE=∠D

∴△ABE≌△DAF(ASA),
∴AF=BE;
∴MP=NQ.