早教吧作业答案频道 -->数学-->
第一题:∫(上限ln2下限0)e^x(1+e^x)^2dx第二题:不计算积分,比较∫(上限1下限0)e^xdx和∫(上限1下限0)e^x^2dx的大小
题目详情
第一题:∫(上限ln2下限0)e^x(1+e^x)^2dx
第二题:不计算积分,比较 ∫(上限1下限0)e^xdx 和 ∫(上限1下限0)e^x^2dx的大小
第二题:不计算积分,比较 ∫(上限1下限0)e^xdx 和 ∫(上限1下限0)e^x^2dx的大小
▼优质解答
答案和解析
约定:∫[a,b] 表示求[a,b]区间上的定积分.
第一题:
原式=∫[0,ln2]e^x(1+e^x)^2dx
=∫[0,ln2](1+e^x)^2d(1+e^x)
=(1/3)(1+e^x)^3|[0,ln2]
=(1/3)((1+e^(ln2))^3-(1+e^0)^3)
=19/3
第二题:因x∈[0,1]时,x≥x^2 且仅当x=0或x=1时取“=”
得x∈[0,1]时,e^x≥e^(x^2) 且仅当x=0或x=1时取“=”
由定积分的意义得:
∫[0,1]e^xdx>∫[0,1]e^(x^2)dx
希望对你有点帮助!
第一题:
原式=∫[0,ln2]e^x(1+e^x)^2dx
=∫[0,ln2](1+e^x)^2d(1+e^x)
=(1/3)(1+e^x)^3|[0,ln2]
=(1/3)((1+e^(ln2))^3-(1+e^0)^3)
=19/3
第二题:因x∈[0,1]时,x≥x^2 且仅当x=0或x=1时取“=”
得x∈[0,1]时,e^x≥e^(x^2) 且仅当x=0或x=1时取“=”
由定积分的意义得:
∫[0,1]e^xdx>∫[0,1]e^(x^2)dx
希望对你有点帮助!
看了 第一题:∫(上限ln2下限0...的网友还看了以下:
求极限,X→0,(1-x^2)^(-1/2),是不是可以化简成一个多项式?如题,原题是x->0,( 2020-04-27 …
第一题:∫(上限ln2下限0)e^x(1+e^x)^2dx第二题:不计算积分,比较∫(上限1下限0 2020-06-12 …
概率题f(x,y)不等于0当0≤x≤1时,fX(x)=∫(上限x下限0)8xydy=4x^3,请教 2020-06-12 …
求2xsin(1/x)-cos(1/x)在x→0+时的极限.这个问题是这么来的,考虑f(x)=(x 2020-07-21 …
问关于定积分的问题若∫(上限π,下限0)xf(sinx)dx=∫(上限π,下限0)(π-t)f(s 2020-07-23 …
一道高数题设f’’(x)连续,且f(∏)=0,∫(上限∏,下限0)f(x)+f’’(x)sinxd 2020-07-30 …
设Φ(x)=∫[1/(1+t^2)]dt上限x下线1求Φ'(2)处的导数.lim(X→0)[∫上限 2020-07-31 …
计算∫(上限+∞下限0)xe^(-x)/(1+e^(-x))^2其中过程是∫xe^(-x)dx/( 2020-07-31 …
小女子谢了,求各位兄台,帮解答高数题对ln(1+x^n)中的变量x取0到1的定积分后,再求n趋近无穷 2020-11-07 …
求极限x-->0时lim(tanx-sinx)/(x^2*tanx)用分子先提取tanx再用等价无穷 2021-01-07 …