早教吧作业答案频道 -->数学-->
已知二次函数f(x)满足:(1)f(-1)=0,(2)对一切x的值有x≤f(x)≤(1+x^2)/2成立(1)试求f(x)的表达式.(2)当x∈-1,1时,函数g(x)=f(x)-mx(x∈R)是单调的,求m的取值范围.
题目详情
已知二次函数f(x)满足:(1)f(-1)=0,(2)对一切x的值有x≤f(x)≤(1+x^2)/2成立
(1)试求f(x)的表达式.(2)当x∈【-1,1】时,函数g(x)=f(x)-mx(x∈R)是单调的,求m的取值范围.
(1)试求f(x)的表达式.(2)当x∈【-1,1】时,函数g(x)=f(x)-mx(x∈R)是单调的,求m的取值范围.
▼优质解答
答案和解析
(1)在 x≤f(x)≤(1+x^2)/2 中 ,令x=1,得1≤f(1)≤1,所以f(1)=1
设 f(x)=ax²+bx+c ,则
f(-1)=a-b+c=0
f(1)=a+b+c=1
解得,b=1/2,a+c=1/2
又对一切x的值有x≤f(x),
即 ax²-(1/2)•x+c ≥0 恒成立
所以 a>0且⊿=1/4 - 4ac≤0
即 ac≥1/16 (当然也有c>0)
另一方面,ac≤[(a+c)/2]²=1/16
从而 当a=c=1/4时,有ac=1/16
所以 f(x)=(1/4)•x²+(1/2)•x+1/4
(2)g(x)=f(x)-mx=(1/4)•x²+(1/2 -m)•x+1/4
对称轴为x=2m-1
由于g(x)在[-1,1]是的单调的,所以区间在对称轴的一侧,
即 2m-1≤-1或 2m-1≥1
解得 m≤0或 m≥1
设 f(x)=ax²+bx+c ,则
f(-1)=a-b+c=0
f(1)=a+b+c=1
解得,b=1/2,a+c=1/2
又对一切x的值有x≤f(x),
即 ax²-(1/2)•x+c ≥0 恒成立
所以 a>0且⊿=1/4 - 4ac≤0
即 ac≥1/16 (当然也有c>0)
另一方面,ac≤[(a+c)/2]²=1/16
从而 当a=c=1/4时,有ac=1/16
所以 f(x)=(1/4)•x²+(1/2)•x+1/4
(2)g(x)=f(x)-mx=(1/4)•x²+(1/2 -m)•x+1/4
对称轴为x=2m-1
由于g(x)在[-1,1]是的单调的,所以区间在对称轴的一侧,
即 2m-1≤-1或 2m-1≥1
解得 m≤0或 m≥1
看了 已知二次函数f(x)满足:(...的网友还看了以下:
\\x0d\\x0d\\x0d\\x0d\\x0d\\x0df(x)与g(x)是定义在R上的两个可 2020-05-13 …
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
同阶无穷小量的表示方法?急!还有f(x)=O(g(x))是什么意思?老师说f(x)=h(x)g(x 2020-06-05 …
已知函数f(X)=lg(x+1)1.若0<f(2-2x)-f(x)<1,求x的范围2.若g(x)是 2020-06-05 …
当x趋近于x0时,f(x)有极限,g(x)无极限,讨论当x趋近于x0是,f(x)+g(x)是否有极 2020-06-05 …
1.已知函数f(x)的图像与函数y=x+1/x的图像关于点(1,0)对称,则f(x)=2.奇函数f 2020-07-17 …
关于可去间断点老师上课讲了一个例子,f(x)=x^2当x不等于0;f(x)=1当x=0.然后说使g 2020-07-29 …
若lim(x->0)f(x)=0,则当g(x)有界,必有lim(x->0)f(x)g(x)=0A. 2020-07-31 …
若f(x),g(x)都是增函数,当f(x)及g(x)两者分别都恒小于0时,f(x)·g(x)有没可 2020-08-01 …
高数:书上有定义limf(x)/g(x)=1,则f(x)与g(x)是等价无穷小.还有重要极限lims 2020-10-31 …