早教吧作业答案频道 -->数学-->
定积分证明题设f(x)在[-a,a]上连续,具有二阶连续导数,且f(0)=0证明:在[-a,a]上至少存在一点n,使得a^3f''(n)=3∫f(x)dx(积分从-a到a)
题目详情
定积分证明题
设f(x)在[-a,a]上连续,具有二阶连续导数,且f(0)=0
证明:在[-a,a]上至少存在一点n,使得a^3f''(n)=3∫f(x)dx(积分从-a到a)
设f(x)在[-a,a]上连续,具有二阶连续导数,且f(0)=0
证明:在[-a,a]上至少存在一点n,使得a^3f''(n)=3∫f(x)dx(积分从-a到a)
▼优质解答
答案和解析
根据泰勒中值定理,在x=0处把f(x)展开,得f(x)=f(0)+f'(0)x+f''(n)x^2/2,其中n属于[-a,a].由于f(0)=0,两边在区间[-a,a]积分得∫f(x)dx=∫f'(0)x+∫f''(n)x^2/2,其中∫f'(0)x是关于x的奇函数,而区间关于原点对称,所以∫f'(0)x=0.所以∫f(x)dx=∫f''(n)x^2/2,积分得a^3f''(n)=3∫f(x)dx.
看了 定积分证明题设f(x)在[-...的网友还看了以下:
线性代数证明,设A是n阶方阵,且A的平方等于En,证明R(A+E)+R(A-E)设A是n阶方阵,且 2020-04-05 …
设A,B为n阶矩阵,且E-AB可逆,证明E-BA设A,B为n阶矩阵,且E-AB可逆,证明E-BA也 2020-04-05 …
1.设A为n阶矩阵,且∣A∣=2,则∣2A∣=()1.设A为n阶矩阵,且∣A∣=2,则∣2A∣=( 2020-05-14 …
设A为n阶方阵,且A^2=0,则下列选项中错误的是A.A可逆B.A+E可逆C.设A为n阶方阵,且A 2020-05-14 …
设A为n阶方阵,且A^2=0,则下列选项中错误的是A.A可逆B.A+E可逆C.设A为n阶方阵,且A 2020-05-14 …
已知函数和反函数,求如何用函数的多阶导数表示反函数的多阶导数?设y=(x)在点x0处三阶可导,且f 2020-06-13 …
1.原函数连续可导,则它的任意阶导函数是否连续可导?2.已知函数的某阶导函数存在,可否推知比它低阶 2020-06-18 …
线性代数1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明: 2020-06-30 …
如果一个函数n阶可导,且在x0点前n-1阶导数都等于0,第n阶导数不为0,当n为偶数时,则x0为极 2020-07-31 …
高阶导数问题若某函数在x0处n阶可导,是否可以得到该函数在x0的邻域内n-1阶可导?若某函数在x0 2020-07-31 …