早教吧作业答案频道 -->其他-->
数学课上,李老师先让同学们了解了以下知识:已知:等边△ABC,E为线段AB上一点,D为线段CB延长线上一点,ED=EC,确定AE与BD大小关系.然后出示了如下题目.小敏与同桌小聪讨论后,进行
题目详情
数学课上,李老师先让同学们了解了以下知识:
已知:等边△ABC,E为线段AB上一点,D为线段CB延长线上一点,ED=EC,确定AE与BD大小关系.
然后出示了如下题目.小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论,当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE______DB.(填“>”,“<”或“=”)
(2)特例启发,解答题目,当E为线段AB上任意一点,其余条件不变,如图2,确定线段AE与DB的大小关系.
解:题目中,AE与DB的大小关系是:AE______DB(填“>”,“<”或“=”).并说明理由.
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,请直接写出
CD的长.
已知:等边△ABC,E为线段AB上一点,D为线段CB延长线上一点,ED=EC,确定AE与BD大小关系.
然后出示了如下题目.小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论,当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE______DB.(填“>”,“<”或“=”)
(2)特例启发,解答题目,当E为线段AB上任意一点,其余条件不变,如图2,确定线段AE与DB的大小关系.
解:题目中,AE与DB的大小关系是:AE______DB(填“>”,“<”或“=”).并说明理由.

(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,请直接写出
CD的长.
▼优质解答
答案和解析
(1)∵△ABC是等边三角形,E为AB的中点,
∴∠BCE=30°,BE=AE,
∵ED=EC,
∴∠EDB=∠BCE=30°,
∵∠ABD=120°,
∴∠DEB=30°,
∴DB=EB,
∴AE=DB,
故答案为:=.
(2)AE=DB.
如图2,过点E作EF∥BC,交AC于点F.

∵EF∥BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.
∴△AEF是等边三角形,AE=EF=AF.
∴BE=CF.
∵ED=EC,
∴∠ECD=∠D.
又∵∠ECF=60°-∠ECD,∠DEB=∠EBC-∠D=60°-∠D,
∴∠ECF=∠DEB.
在△BDE与△FEC中,
∴△BDE≌△FEC(SAS),
∴BD=EF=AE.
∴AE=DB.
故答案为:=.
(3)CD=1或3,
分为两种情况:①如图3

过A作AM⊥BC于M,过E作EN⊥BC于N,
则AM∥EN,
∵△ABC是等边三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=
BC=
,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴△AMB∽△ENB,
∴
=
,
∴
=
,
∴BN=
,
CN=1+
=
,
∴CD=2CN=3;
②如图4,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,

∵△ABC是等边三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=
BC=
,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴
=
,
∴
=
,
∴MN=1,
∴CN=1-
∴∠BCE=30°,BE=AE,
∵ED=EC,
∴∠EDB=∠BCE=30°,
∵∠ABD=120°,
∴∠DEB=30°,
∴DB=EB,
∴AE=DB,
故答案为:=.
(2)AE=DB.
如图2,过点E作EF∥BC,交AC于点F.

∵EF∥BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.
∴△AEF是等边三角形,AE=EF=AF.
∴BE=CF.
∵ED=EC,
∴∠ECD=∠D.
又∵∠ECF=60°-∠ECD,∠DEB=∠EBC-∠D=60°-∠D,
∴∠ECF=∠DEB.
在△BDE与△FEC中,
|
∴△BDE≌△FEC(SAS),
∴BD=EF=AE.
∴AE=DB.
故答案为:=.
(3)CD=1或3,
分为两种情况:①如图3

过A作AM⊥BC于M,过E作EN⊥BC于N,
则AM∥EN,
∵△ABC是等边三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=
1 |
2 |
1 |
2 |
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴△AMB∽△ENB,
∴
AB |
BE |
BM |
BN |
∴
1 |
2−1 |
| ||
BN |
∴BN=
1 |
2 |
CN=1+
1 |
2 |
3 |
2 |
∴CD=2CN=3;
②如图4,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,

∵△ABC是等边三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=
1 |
2 |
1 |
2 |
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴
AB |
AE |
BM |
BN |
∴
1 |
2 |
| ||
MN |
∴MN=1,
∴CN=1-
1 |
|
看了 数学课上,李老师先让同学们了...的网友还看了以下:
.已知不论x取什么值,代数式(ax2)/(bx-5)的值都相同,那么a与b应满足怎样的等量关系?已 2020-05-13 …
有关于直角坐标系D是正方形OABC的边OC上一点,作∠BAD的平分线交BC与点E,延长CO到F,使 2020-05-13 …
阅读下面的文字,按要求作文。万物在传递中绵延不已,人类在传递中生生不息。技艺、经验可以传递,思想、 2020-05-16 …
毛泽东撰写《新民主主义论》等著作,对中国革命的性质、对象、任务等进行系统论述,这是在A.井冈山时期 2020-05-16 …
对管理会计一直存在着信息系统论和管理活动论的争论。这句话是对的还是错的对管理会计一直存在着信息系 2020-06-24 …
如图,在三角形ABC中,AB=AC,点P是BC边上一动点,过点P作PE丄AB,PF丄AC,BG丄A 2020-08-03 …
狭义相对论:按S系计时系统,A‘接受光信号的时刻为Ta'=1:10,但S’系已将A‘时钟拨到T’a‘ 2020-11-08 …
已知,如图,在三角形abc中,角bac等于90度,ad垂直bc,垂足为d,e是ac中点,ed的延长已 2020-11-27 …
1979年4月3日,新华社发电指出,“鉴于国际形势已发生重大变化,决定《中苏友好同盟互助条约》期满后 2020-12-01 …
阅读下面文字,完成1—3小题。系统生物学面面观我国读者对系统理论和系统思想并不陌生。二十世纪八十年代 2020-12-23 …