早教吧作业答案频道 -->其他-->
函数(sint/t)的积分是什么呀?那它的原函数是什么呀,能不能贴上来呢~我已经分部很久了呀,都没算出来要是可以算出来麻烦把结果贴一下吧因为t是负1次方的分部下去负次方只会越来越
题目详情
函数(sint/t)的积分是什么呀?
那它的原函数是什么呀,能不能贴上来呢~
我已经分部很久了呀,都没算出来 要是可以算出来麻烦把结果贴一下吧 因为t是负1次方的 分部下去负次方只会越来越多啊 变不回去呀
那它的原函数是什么呀,能不能贴上来呢~
我已经分部很久了呀,都没算出来 要是可以算出来麻烦把结果贴一下吧 因为t是负1次方的 分部下去负次方只会越来越多啊 变不回去呀
▼优质解答
答案和解析
这个函数是不可积的,但是它的原函数是存在的,只是不能用初等函数表示而已.
习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数.比如下面列出的几个积分都是属于“积不出”的函数
∫e^(-x*x)dx,∫(sinx)/xdx,∫1/(lnx)dx,∫sin(x*x)dx
∫(a*a*sinx*sinx+b*b*cosx*cosx)^(1/2)dx(a*a不等于b*b)
--------------------------------------
以下是从别人那粘贴过来的..原函数我也不知道,
___________________________________
下面证明∫sint/tdt=π/2(积分上限为∞,下限为0)
因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分.
I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0)
显然:
I(0)=∫sint/tdt(积分上限为∞,下限为0)
I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0)
=∫e^(-xt)sin(t)sint(积分上限为∞,下限为0)
=e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0)
=-1/(1+x^2)
从而有
I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1)
|I(x)|=|∫e^(-xt)sint/tdt|
≤∫|e^(-xt)sint/t|dt
≤∫e^(-xt)dt
=-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0)
=1/x -->0 (x-->+∞)
即lim(I(x))-->0 (x-->+∞)
对(1)式两端取极限:
lim(I(x))(x-->+∞)
=-lim(-arctan(x)+C ) (x-->+∞)
=-π/2+C
即有0=-π/2+C,可得C=π/2
于是(1)式为
I(x)=-arctan(x)+π/2
limI(x)=lim(-arctan(x)+π/2) (x-->0)
I(0)=π/2
所以有
I(0)=∫sint/tdt(积分上限为∞,下限为0)=π/2
因为sinx/x是偶函数,所以
∫sint/tdt(积分上限为∞,下限为-∞)
=π
习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数.比如下面列出的几个积分都是属于“积不出”的函数
∫e^(-x*x)dx,∫(sinx)/xdx,∫1/(lnx)dx,∫sin(x*x)dx
∫(a*a*sinx*sinx+b*b*cosx*cosx)^(1/2)dx(a*a不等于b*b)
--------------------------------------
以下是从别人那粘贴过来的..原函数我也不知道,
___________________________________
下面证明∫sint/tdt=π/2(积分上限为∞,下限为0)
因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=0),转而讨论含参量的积分.
I(x)=∫e^(-xt)sint/tdt (积分上限为∞,下限为0)
显然:
I(0)=∫sint/tdt(积分上限为∞,下限为0)
I`(x)=∫∂(e^(-xt)sint/t)/∂x dt (积分上限为∞,下限为0)
=∫e^(-xt)sin(t)sint(积分上限为∞,下限为0)
=e^(-xt)(xsint+cost)/(1+x^2)|(上限为∞,下限为0)
=-1/(1+x^2)
从而有
I(x)=-∫(1/(1+x^2))dx=-arctan(x)+C (1)
|I(x)|=|∫e^(-xt)sint/tdt|
≤∫|e^(-xt)sint/t|dt
≤∫e^(-xt)dt
=-(1/x)*e^(-xt)|(对t的积分原函数,上限为∞,下限为0)
=1/x -->0 (x-->+∞)
即lim(I(x))-->0 (x-->+∞)
对(1)式两端取极限:
lim(I(x))(x-->+∞)
=-lim(-arctan(x)+C ) (x-->+∞)
=-π/2+C
即有0=-π/2+C,可得C=π/2
于是(1)式为
I(x)=-arctan(x)+π/2
limI(x)=lim(-arctan(x)+π/2) (x-->0)
I(0)=π/2
所以有
I(0)=∫sint/tdt(积分上限为∞,下限为0)=π/2
因为sinx/x是偶函数,所以
∫sint/tdt(积分上限为∞,下限为-∞)
=π
看了 函数(sint/t)的积分是...的网友还看了以下:
有一张纸,第一次把它分割成3片,第2次把其中的一片分成3片,以此类推,5次分割得几片?(2)经n次 2020-04-25 …
有5把锁,其中4把质量相同,另一个是次品,次品轻些.1:你能称2次就保证把次品找出来吗、为什么2: 2020-04-27 …
写一次游览的经历你游览过旅游景点吗?你参加过游园活动吗?你赶过集市、逛过庙会吗?……让我们选择一次 2020-06-19 …
用一次呈直线的切割,你可以把一个馅饼切成两块.第二次切割与第一次切割相交,则把馅饼切成4块.第三次 2020-06-20 …
用一次呈直线的切割,你可以把一个馅饼切成两块.第二次切割与第一次切割相交,则把馅饼切成4块.第三次 2020-06-20 …
用一次呈直线的切割,你可以把一个馅饼切成两块.第二次切割与第一次切割相交,则把馅饼切成4块.第三次 2020-06-20 …
有一张纸,第1次把它分割成4片,第2次把其中的1片分割成4片,以后每一次都把前面所得的其中一片分割 2020-07-12 …
层次分析法做题4.铃木是我们班口语最好的学生5、请你帮我把箱子搬下车.6、那些科学家已经设计好了解 2020-08-01 …
一个月月经来两次是怎么回事 2021-04-07 …
月经来两次怎么回事 2021-04-22 …