早教吧作业答案频道 -->数学-->
1provethefollowingidentities:a.cosh(2x)=cosh^2(x)+sinh^2(x)b.cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)2.showthattheinversehyperboliccosinefunctioniscosh^-1(x)=ln(x+根号下x^2-1)byadaptingthemethodusedinclasstoderivetheinvers
题目详情
1 prove the following identities:
a.cosh(2x)=cosh^2(x)+sinh^2(x)
b.cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)
2.show that the inverse hyperbolic cosine function is cosh^-1(x)=ln( x+根号下x^2-1 ) by adapting the method used in class to derive the inverse of the hyperbolic sine function.
3.verify the differentiation formula d/dx[sech^-1(x)]=-1/x根号下1-x^2
3
4.let x>0.show that ∫ e^xt dt=2sinh(3x)/x
-3
a.cosh(2x)=cosh^2(x)+sinh^2(x)
b.cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)
2.show that the inverse hyperbolic cosine function is cosh^-1(x)=ln( x+根号下x^2-1 ) by adapting the method used in class to derive the inverse of the hyperbolic sine function.
3.verify the differentiation formula d/dx[sech^-1(x)]=-1/x根号下1-x^2
3
4.let x>0.show that ∫ e^xt dt=2sinh(3x)/x
-3
▼优质解答
答案和解析
1.
a.
cosh(2x)
= [e^(2x) + e^(-2x)]/2
= [(e^x)²+(e^-x)²]/2
= [(e^x + e^-x)² + (e^x - e^-x)²]/4
= (e^x + e^-x)²/4 + (e^x - e^-x)²/4
= cosh²(x) + sinh²(x)
b.
cosh(x+y)
= [e^(x+y) + e^(-x-y)]/2
= [e^x * e^y + e^-x * e^-y]/2
= [e^x * e^y + e^x * e^-y +e^-x * e^y + e^-x * e^-y]/4 + [e^x * e^y - e^x * e^-y -e^-x * e^y + e^-x * e^-y]/4
= (e^x + e^-x)(e^y + e^-y)/4 + (e^x - e^-x)(e^y - e^-y)/4
= cosh(x)cosh(y)+sinh(x)sinh(y)
2.
cosh(x) = (e^x + e^-x)/2
令y = cosh(x),即x = cosh^-1(y),则2y = e^x + e^-x
(e^x)² - 2ye^x + 1 = 0
e^x = y ± √(y²-1)
x = ln[y ± √(y²-1)] = cosh^-1(y)
即cosh^-1(x) = ln[x ± √(x²-1)]
因为x - √(x²-1) = 1/[x + √(x²-1)] 恒不大于1(小于或等于1)
则ln[x - √(x²-1)] ≤ 0
一般取该函数的正支,即cosh^-1(x) = ln[x + √(x²-1)]
3.
令y = sech^-1(x),则x = sech(y),dx = [sech(y)]'dy
而d[sech^-1(x)]/dx = dy/dx = 1/[sech(y)]'
sech(y) = 2/(e^y + e^-y)
[sech(y)]' = [2/(e^y + e^-y)]' = -2(e^y - e^-y)/(e^y + e^-y)² = -sinh(y)/cosh²(y)
dy/dx = 1/[sech(y)]' = -cosh²(y)/sinh(y)
因为x = sech(y),所以cosh(y) = 1/x,sinh(y) = √(1 - 1/x²)
代入上式得到dy/dx = -1/x² * 1/√(1 - 1/x²) = -1/[x√(x²-1)]
即d[sech^-1(x)]/dx = -1/[x√(x²-1)]
4.
∫(-3,3)e^xt dt
= 1/x * ∫(-3,3)e^xt dxt
= 1/x * e^xt|(-3,3)
= 1/x * (e^3x - e^-3x)
= 2sinh(3x)/x
a.
cosh(2x)
= [e^(2x) + e^(-2x)]/2
= [(e^x)²+(e^-x)²]/2
= [(e^x + e^-x)² + (e^x - e^-x)²]/4
= (e^x + e^-x)²/4 + (e^x - e^-x)²/4
= cosh²(x) + sinh²(x)
b.
cosh(x+y)
= [e^(x+y) + e^(-x-y)]/2
= [e^x * e^y + e^-x * e^-y]/2
= [e^x * e^y + e^x * e^-y +e^-x * e^y + e^-x * e^-y]/4 + [e^x * e^y - e^x * e^-y -e^-x * e^y + e^-x * e^-y]/4
= (e^x + e^-x)(e^y + e^-y)/4 + (e^x - e^-x)(e^y - e^-y)/4
= cosh(x)cosh(y)+sinh(x)sinh(y)
2.
cosh(x) = (e^x + e^-x)/2
令y = cosh(x),即x = cosh^-1(y),则2y = e^x + e^-x
(e^x)² - 2ye^x + 1 = 0
e^x = y ± √(y²-1)
x = ln[y ± √(y²-1)] = cosh^-1(y)
即cosh^-1(x) = ln[x ± √(x²-1)]
因为x - √(x²-1) = 1/[x + √(x²-1)] 恒不大于1(小于或等于1)
则ln[x - √(x²-1)] ≤ 0
一般取该函数的正支,即cosh^-1(x) = ln[x + √(x²-1)]
3.
令y = sech^-1(x),则x = sech(y),dx = [sech(y)]'dy
而d[sech^-1(x)]/dx = dy/dx = 1/[sech(y)]'
sech(y) = 2/(e^y + e^-y)
[sech(y)]' = [2/(e^y + e^-y)]' = -2(e^y - e^-y)/(e^y + e^-y)² = -sinh(y)/cosh²(y)
dy/dx = 1/[sech(y)]' = -cosh²(y)/sinh(y)
因为x = sech(y),所以cosh(y) = 1/x,sinh(y) = √(1 - 1/x²)
代入上式得到dy/dx = -1/x² * 1/√(1 - 1/x²) = -1/[x√(x²-1)]
即d[sech^-1(x)]/dx = -1/[x√(x²-1)]
4.
∫(-3,3)e^xt dt
= 1/x * ∫(-3,3)e^xt dxt
= 1/x * e^xt|(-3,3)
= 1/x * (e^3x - e^-3x)
= 2sinh(3x)/x
看了 1provethefollo...的网友还看了以下:
20.x^2/a^2+y^2/b^2+z^2/c^2=1成立;20.x^2/a^2+y^2/b^2 2020-06-11 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
matlab求解globalabcdev;a=1;b=0;c=-1;d=0;e=1.5;v=1.5 2020-07-24 …
x(y+z-x)=39-2(x*x)1.解方程组y(z+x-y)=52-2(y*y)z(x+y-z) 2020-10-30 …
{x^2+y^2=12x+y=5{x^2-y^2+x-y-6=0x^2-y^2-x+y-4=0{x^ 2020-10-31 …
1.x+y+z≠0且x/(y+z)=y/(x+y)=z/x+y,求x/(x+y+z)2.x+y+z= 2020-10-31 …
1.计算(x-y+4xy/(x-y))(x+y-4xy/(x+y))2.已知x/(x^2-x+1)= 2020-10-31 …
集思破题1.16m-m^2/m^2+m-202.已知|x|/x-2=x/2-x,则x应满足什么条件答 2020-12-13 …
[求助]多元函数的转化设f(x+y,y/x)=x^2+y^2,求f(x,y)我做的是:令x+y=uy 2020-12-14 …